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Abstract—The recent advances in Convolutional Neural Net-
works (CNNs) and Vision Transformers have convincingly
demonstrated high learning capability for video action recog-
nition on large datasets. Nevertheless, deep models often suffer
from the overfitting effect on small-scale datasets with a limited
number of training videos. A common solution is to exploit the
existing image augmentation strategies for each frame individu-
ally including Mixup, Cutmix, and RandAugment, which are not
particularly optimized for video data. In this paper, we propose
a novel video augmentation strategy named Selective Volume
Mixup (SV-Mix) to improve the generalization ability of deep
models with limited training videos. SV-Mix devises a learnable
selective module to choose the most informative volumes from two
videos and mixes the volumes up to achieve a new training video.
Technically, we propose two new modules, i.e., a spatial selective
module to select the local patches for each spatial position, and
a temporal selective module to mix the entire frames for each
timestamp and maintain the spatial pattern. At each time, we
randomly choose one of the two modules to expand the diversity
of training samples. The selective modules are jointly optimized
with the video action recognition framework to find the optimal
augmentation strategy. We empirically demonstrate the merits
of the SV-Mix augmentation on a wide range of video action
recognition benchmarks and consistently boot the performances
of both CNN-based and transformer-based models.

Index Terms—video action recognition, neural networks, data
augmentation.

I. INTRODUCTION

DEEP models, including CNN and transformer-based ar-
chitectures, have successfully proven highly effective for

understanding multimedia content on large-scale datasets. To
date in the literature, there are various large models that
push the limits of multimedia analysis systems, e.g., Vision
Transformer [1], Swin Transformer [2], ConvNeXt [3] for
image classification, MViT [4], Video Swin [5], Uniformer
[6] for video analysis, CLIP [7], GLIP [8] for cross-modality
understanding. Nevertheless, the impressive performances of
these models highly rely on large-scale datasets and are easily
affected by the overfitting effect on the tasks with insufficient
training data. Such an issue becomes even worse particularly
for video action recognition due to the difficulty of achieving
large amounts of video data and expensive efforts for labeling.
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Acc. (%) ∆Acc. (%) Acc. (%) ∆Acc. (%)
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+Cutmix 86.9 +1.7 45.7 +0.2
+Mixup 84.7 -0.5 44.6 -0.9
+SV-Mix 88.4 +3.2 47.2 +1.7

(c) Performance comparsion

Fig. 1. The intuition of (a) the typical Cutmix [9] and Mixup [10] augmen-
tations on video data, and (b) our Selective Volume Mixup (SV-Mix). The
typical methods randomly combine regions or entire frames from two videos
and may lose crucial information. In contrast, our SV-Mix contains learnable
selective modules to adaptively select valuable volumes. A tapas performance
comparison between Cutmix/Mixup and our SV-Mix is also shown in (c).

To alleviate this issue, a general practice is to exploit
network regularization and data augmentation to preserve
the effectiveness of large models with limited training data.
Among these strategies, the network regularization methods,
including dropout [11], drop path [12], and weight decay [13],
are general network training schemes across different tasks
and can be directly utilized for video models. However, the
policy of data augmentation should be specially designed for
different data formats since it is highly related to the intrinsic
properties of the input modality. The current standard data
augmentation strategy for video data (e.g., in [4], [5], [14])
is to simply perform the existing image augmentation to each
frame individually, as illustrated in Figure 1(a). This solution
is straightforward but ignores the properties of video data, e.g.,
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the temporal correlation across frames, and thus weakens the
effectiveness of data augmentation. Moreover, these strategies
are all manually devised and not learnable for different archi-
tectures/datasets, which requires more significant engineering
effort of human experts to tune the hyper-parameters given a
new architecture/dataset.

In this work, we aim at investigating a learnable data
augmentation mechanism to facilitate the data efficiency for
video action recognition. We start from the basic idea of the
popular image augmentations, i.e., Mixup [10] and Cutmix
[9], that combines the content of two videos to obtain a
new training video. Mixup blends the two training images by
weighted summation, and Cutmix randomly exchanges a local
region of two samples. These two manually designed strategies
consistently show good performances in image models but
are not acclimatized to the video domain. We speculate that
the difficulty of video Mixup/Cutmix mainly originates from
two aspects: 1) Video is an information-intensive media, and
the labeled actions are related to objects, interaction, scene,
etc. Randomly exchanging a local region (like in Cutmix)
may lose some crucial information. 2) Video usually contains
several background frames that do not contain the labeled
action. Blending the background frame to the other video (like
in Mixup) may dilute the useful cues of the original video.
That motivates us to devise a selective module to preserve the
informative volumes in the mixing process.

To this end, we present a new Selective Volume Mixup (SV-
Mix), as shown in Figure 1(b). Specifically, SV-Mix contains
two modules, i.e., a spatial selective module and a temporal
selective module. The former builds cross attention between
the local patches with the same timestamp from two videos,
respectively, to determine the preserved patches in each spatial
position. The latter utilizes a similar attention mechanism but
on the frame level to blend the most informative frames while
keeping the spatial structure. The two selective modules are
complementary to each other that select the mixed volumes
on the patch level and frame level, respectively. Hence, we
stochastically choose one of the two modules at each time
to expand the divergence of the augmented samples. SV-Mix
is jointly optimized with the action recognition framework in
an end-to-end manner. Moreover, to avoid the bad influence
between the augmentation network and the action recognition
network before convergence, we devise a disentangled training
pipeline, which exploits a slow-moving average of action
recognition parameters instead of the training one to guide
the optimization of SV-Mix. As a result, the gradients of both
components are disentangled and lead to the convergence of
both optimal data augmentation and optimal action recognition
framework.

To the best of our knowledge, our work is the first to devise
a learnable data augmentation strategy for video data. The
design also leads to the elegant view of how to adaptively
mix two videos while maintaining valuable information. We
uniquely formulate the problem as cross attention between the
volumes of two videos and devise two selection modules by
mixing along the spatial dimension and temporal dimension,
respectively. Extensive experiments on five datasets demon-
strate the effectiveness of our proposal, and with different

action recognition frameworks including both CNN-based and
transformer-based methods, our SV-Mix consistently improves
the performances over other augmentation strategies.

II. RELATED WORK

We briefly group the related works into two categories:
video action recognition and data augmentation strategies.

Video action recognition. With the prevalence of deep
learning in multimedia analysis, the dominant paradigm in
modern video action recognition is deep neural networks.
The research of deep models for video action recognition has
proceeded along three dimensions: 2D CNNs, 3D CNNs and
video transformers. 2D CNNs [15]–[19] often treat a video
as a sequence of frames or optical flow images, and directly
extend the 2D CNNs from the image domain for frame-level
recognition. For instance, the famous two-stream networks
proposed in [15] apply two 2D CNNs separately on visual
frames and stacked optical flow images. Later, Wang et al.
[20] propose Temporal Segment Networks, which divide input
video into several segments and sample one frame/optical flow
image from each segment as the input of two-stream networks.
The two-stream architecture is further extended by advanced
fusion strategies [16], [17], and feature encoding mechanism
[18], [19].

The above 2D CNNs proceed each frame individually at
early layers, and the pixel-level temporal evolution across
consecutive frames is seldom explored. To alleviate this issue,
3D CNNs [14], [21]–[32] are devised to directly learn spatio-
temporal correlation from video clips via 3D convolution. A
prototype of 3D CNNs is introduced in [21] by replacing
2D convolution in 2D CNNs with 3D convolution. A widely
adopted 3D CNN, called C3D [22], is devised by expanding
VGG-style 2D CNN to 3D manner with both 3D convolutions
and 3D poolings. To reduce the expensive computations and
the model size of 3D CNNs, the fully 3D convolution is
decomposed into a spatial convolution plus a temporal convo-
lution [23]–[25] or a depth-wise convolution plus a point-wise
convolution [26], [27]. Another scheme to improve 3D CNNs
is to expand the temporal receptive field. Varol et al. present
LTC architecture [28] that increases the length of input clips
while reducing the resolution of the input frame. Furthermore,
3D convolution on different time scales [14], [29], [30] and
holistic view of video [31], [32] are also proven to be effective
on long-term modeling.

More recently, video transformers [5], [6], [33]–[39] be-
come formidable competitors to 3D CNNs. The early works
for video transformers, i.e., TimesSformer [33] and ViViT [34]
study the basic designs of video transformer including tubelet
embedding and attention decomposition. MViT [35] and Video
Swin [5] follow the philosophy of CNNs, where the channel
dimension increases while the spatial resolution shrinks with
the layer going deeper, to reduce the computational cost.
More fine-grained designs are proposed recently to improve
video transformers, including Multiview Transformer [36],
cross-frame attention [37], recurrent attention [38], trajectory
attention [39], and combining 3D convolutions [6].

Data augmentation strategies. The data augmentation
strategy, as an important facility to alleviate the overfitting
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Fig. 2. The overview of our proposed Selective Volume Mixup (SV-Mix) data augmentation. Given two training videos, we first extract the volume-level
feature map of each video by an encoder f t

ϕ(·). Next, we randomly choose to select the target volumes either on patch level (spatial selective module) or on
the frame level (temporal selective module). The selected volumes are then combined together to achieve an augmented video as the input of the subsequent
action recognition framework.

effect, has attracted intensive research interests in recent years.
Take the augmentation strategies in the image domain as an
example, random erasing [40] randomly choose a local region
of an image and erase the content inside the bounding box.
Autoaugment [41] formulates the augmentation process as
the combination of sequential augmentation operations and
proposes a search-based algorithm to tune the strength of each
operation. Similarly, RandAugment [42] is also based on a
group of augmentation operations but replaces the search pro-
cess in auto augmentation by randomly choosing operations.
Unlike the mentioned augmentations that are utilized on each
sample individually, Mixup [10] proposes to blend two sam-
ples by random weights and perform multi-label classification
on the mixed image. Similarly, Cutmix [9] devises a strategy
to exchange the pixels in a local region of two images to
be mixed. Moreover, the such idea of mixing two images is
improved by the advanced techniques including TransMix [43]
and Automix [44].

In summary, our work aims to devise a learnable data
augmentation strategy for video action recognition. The most
closely related works are VideoMix [45] and DynaAugment
[46]. They remould the existing Cutmix and RandAugment to
the video domain, respectively. Ours is different in that the
proposed SV-Mix contains two learnable selective modules
to determine the mixed video, which are jointly optimized
with the action recognition framework. Moreover, the selective
modules can be optimized adaptively during training when
using different action recognition models or on different
datasets.

III. METHODOLOGY
In this section, we deliberate our proposed Selective Volume

Mixup (SV-Mix) for video action recognition. First, we briefly
summarize the preliminaries of video model training using
mixed video samples. Then, we detail the architecture of
volume selection, and show how to utilize this architecture
to construct spatial selective module and temporal selective
module. Finally, a novel disentangled training pipeline is
proposed to jointly optimize the volume selection modules
and the action recognition framework. Figure 2 illustrates the
overview of our proposed SV-Mix.

A. Preliminaries

Given a video sample x ∈ RT×H×W×3 which contains T
frames with size H × W and 3 channels, the goal of the
video action recognition model is to inference its one-hot class
label y ∈ Y = {0, 1}K , where K denotes the number of
categories. In the action recognition pipeline with mixed video
samples, the input video data and the corresponding label are
rearranged as the linear interpolation of two or more videos,
and in following statement, we focus on video mixing using
two samples for conciseness. Particularly, given two video-
label pairs (xi, yi) and (xj , yj), the mixed process of samples
and labels can be represented as:

x̃ = M⊙ xi + (1−M)⊙ xj , (1)
ỹ = λyi + (1− λ)yj , (2)

where ⊙ denote hadamard product and M ∈ [0, 1]T×H×W is
the mixing weights. Each element Mt,w,h represents the mix
proportion of a specific pixel and λ is the label proportion
calculated from M. The goal of video model training is to
find a group of parameters ϕ of deep neural network fϕ which
minimize the following loss function:

ϕ̂ = argmin
ϕ
L(ϕ), L(ϕ) = Lsce(fϕ(x̃), ỹ), (3)

where Lsce denotes the soft-targat cross entropy loss.

B. Selective Volume Mixup

In the traditional mixing process, the mixing weights M are
usually randomly sampled from a manually designed principle,
e.g., the frame-level random weights in Mixup, and the random
rectangle with value one in Cutmix. These strategies are not
learnable and ignore the content of input videos. In contrast,
our goal is to parameterize the generation process of mixing
weights M. In the other words, we try to devise another neural
network to predict the probability of each volume in the mixed
video coming from xi.

We achieve this goal by answering two core design ques-
tions: 1) How to model the relationship between volumes
from two input videos to obtain a most informative mixed
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Fig. 3. A diagram of the volume selection module in our SV-Mix. Given the
volumes from two videos vi, vj ∈ RN×C where N and C are the number of
volumes and channels, respectively, the attention weights across two videos
are calculated through three trainable linear mappings Wq ,Wk,Wv . Here λ
denotes the label proportion of the first video.

video; 2) With the additional temporal dimension, how to
avoid the intensive full spatio-temporal dependency modeling
and further leverage this property of video data for a modality-
specific sample mixing; For the first question, we propose an
attention-based block, which treats each volume in xi as a
query and the volumes in xj as keys and values to evaluate if
this volume should be maintained in the mixed video. For the
second one, we propose to decompose the full spatio-temporal
relation, and at each time, only calculate the attention along
the spatial dimension or temporal dimension probabilistically.
Toward these, we first reformulate the generation of the mixed
sample as:

Gθ(xi, xj , λ) =Mθ(V ol(xi), V ol(xj), λ)⊙ xi+

(1−Mθ(V ol(xi), V ol(xj), λ))⊙ xj ,
(4)

in which θ parameterised volume selection function Mθ(·)
and the volume partitioning function V ol(·) implements the
attention decomposition. We then detail these two components
one by one.

Volume selection. Given video volume vi = V ol(xi) and
vj = V ol(xj) ∈ RN×C , where N and C represent the number
of volumes and channels under a specific V ol(·) function,
we devise a cross-attention mechanism to model the relations
between vi and vj , as shown in Figure 3. The attention re-
sponse naturally serves as an importance measurement of each
element, and thus we can easily transfer it to volume selection.
Technically, the similarity between volumes is formulated as:

S(vi, vj , λ) = Softmax

(
(Wqvi,λ)

T ⊗ (Wkvj,1−λ)√
dk

)
, (5)

where Wq and Wk are learnable matrices for projecting
volumes into queries and keys respectively. dk is the dimension
of queries and keys, and vi,λ and vj,1−λ denote λ embeded
volume representations achieved by concatenating λ or 1− λ
on the channel dimension. By gathering the similarities be-
tween volumes from different videos, the attention response

is calculated as the summation of values using the similarities
as weights:

M(vi, vj , λ) = 1− Upsample (δ (S(vi, vj , λ)⊗Wvvj,1−λ)) ,
(6)

where Wv ∈ R1×C is projection matrix for values. δ(·) is the
sigmoid operation to normalize the responds into [0, 1] as a
proportion value. Upsample(·) infers the full spatio-temporal
mixing weights from the N sampled volumes. Please note
that, here we utilize the inverse of attention responses as the
mixing weights, since the higher attention responses usually
indicate higher similarity with the other video but we prefer
to preserve the most distinctive volumes.

Volume partition. Taking inspiration from the concept of
spatio-temporal decomposition [23], [25], we employ a divide-
and-conquer approach to partition the video into volumes from
spatial or temporal perspective. This allows us to perform
volume selection along a single dimension, thereby improving
modeling efficiency and more importantly, enhancing the
distribute diversity of mixed video samples. Notably, since
the attention computation is shape agnostic for input data,
individual spatial selection and temporal selection share the
same parameters but partitioning the volumes along different
dimensions.

Given the video feature Z ∈ RB×T ′×H′×W ′×C encoded
by the backbone f t

ϕ(·), we reshape Z and achieve volumes
as V spa ∈ RBT ′×H′W ′×C for spatial selection. By moving
the temporal dimension to the batch dimension, the attention
is calculated along the spatial dimension for each timestamp
individually.

Similarly, for the temporal selective module, we shrink the
spatial dimension to gather volumes V tem ∈ RB×T ′×C

Vtem =
1

H ′ ×W ′

H′∑
i

W ′∑
j

Zi,j . (7)

With V tem as the input, the temporal selective module cap-
tures the relationship between frames instead of patches, and
then assigns the same weight for all patches in the identical
frame. Through temporal selection, we assign relative impor-
tance for each frame in the mixed video while maintaining the
spatial pattern.

A common strategy to ensemble the spatial selective module
and temporal selective module is to simply average the mixing
weight from the two modules as

Men =
1

2

(
Mθ(v

tem
i , vtemj , λ) +Mθ(v

spa
i , vspaj , λ)

)
. (8)

However, this strategy produces mixed training samples with
only a single style, which limits the diversity [47] of data
augmentation in model training. Under this consideration, we
propose to probabilistically ensemble spatial selective module
and temporal selective module by randomly choosing one of
the two modules at each time:

Men =

{
Mθ(v

tem
i , vtemj , λ), µ ≤ P

Mθ(v
spa
i , vspaj , λ), µ > P

(9)

where µ ∼ U(0, 1) is sampled from a uniform sampling,
and P is the switch probability between two modules. Here,
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we simply set P = 0.5 to demonstrate the effectiveness of
prebabilistically ensemble.

Disentangled training pipeline. By parameterising the
sample mixing process, the forward propagation of the action
recognition model changes from fϕ(x) to fϕ(Gθ(vi, vj , λ)).
An intuitive way to jointly optimize the selective modules θ
and action recognition framework ϕ is to directly conduct
end-to-end learning (we refer it to entangled training in
the following parts) under the supervision of mixed label
ỹ = λyi+(1−λyj). However, a gradient entanglement occurs
in the optimization process of volume selective module θ:

δLsce

δθ
∝ δfϕ(Gθ(vi, vj , λ))

δGθ(vi, vj , λ)
· δGθ(vi, vj , λ)

δθ
(10)

During training, both the parameters ϕ and θ undergo rapid
changes and then the gradient of θ may be corrupted by
δfϕ(Gθ(vi,vj ,λ))

δGθ(vi,vj ,λ)
, which may lead to sub-optimal state for

Mθ and Gθ, and in turn results in sub-optimal classification
performance for fϕ. To solve this problem, inspired by the
disentanglement trick in self-supervised learning, e.g. BYOL
[48], which reveals the stability of the slow-moving average
(momentum update) of current training model and further
utilizes it as the teacher network to guide the optimization
of student network. We follow this basic idea and disentangle
the optimization process of volume selective module and video
action recognizer. In the other words, we wish each module
concentrates on its own task, i.e., action recognition and
mixed video generation, respectively. Particularly, we refer to
the slow-moving average of current action recognizer as the
teacher f t

ϕ to guide the training of SV-Mix modules. Thus,
the optimization process in one iteration is as demonstrated
in Figure 4 (a): 1) frozen f t

ϕ encodes two video samples xi

and xj into semantic space zi and zj ; 2) randomly choose a
volume partition strategy, e.g. V spa or V tem, and generate two
mixed video sample x̃s and x̃t for fs

ϕ and f t
ϕ, respectively, to

predict action categories; 3) update ϕs and θ; 4) update ϕt via
exponential moving average (EMA): ϕt ← mϕt +(1−m)ϕs,
where m ∈ [0, 1) is the momentum coefficient.

In addition, we introduce an extra tributary loss for leading
the mixing weight Mθ to match the predefined λ:

LM = ∥λ− 1

T ×H ×W

∑
i,j,k

Mi,j,k
θ ∥ (11)

We then scale LM by a coefficient ω and add it to the joint
loss as shown in Figure 4.

IV. EXPERIMENTS

In this section, we empirically evaluate the performance of
the SV-Mix on various video recognition datasets, video recog-
nition models and different settings to answer the following
research questions:

• RQ1: How does SV-Mix perform on different video
datasets when adopted on various recognition models?

• RQ2: How does SV-Mix compare with other data aug-
mentation methods?

• RQ3: How do different settings affect SV-Mix?
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Fig. 4. The proposed disentangled training pipeline for jointly optimizing
SV-Mix and the action recognition networks fs

ϕ. In this pipeline, the gradient
of SV-Mix is provided by a momentum-updated version of action recognition
network f t

ϕ. Therefore, the gradients of SV-Mix and fs
ϕ are disentangled,

which stabilizes the training process.

A. Datasets

Something-Something. Something-Something dataset con-
sists of 174 fine-grained action categories that depict humans
performing everyday actions with common objects. Recogniz-
ing actions in the Something-Something dataset heavily relies
on identifying key regions and frames. Classical random linear
interpolation methods, such as Mixup [10] or Cutmix [9],
can weaken or delete these key patterns. The dataset has two
versions, V1 [49] and V2 [50], with 110k and 220k videos
respectively. We report the performances on the validation set
as the annotations for test set are not released.

Mini-Kinetics. Kinetics-400 [51] is a widely used action
recognition benchmark. It contains 240k training samples and
20k validation samples in 400 human action classes. Kinetics
dataset mainly focus on static spatial appearance pattern.
We create a mini version of Kinetics-400 dataset following
[52] which accounts for half of the full Kinetics400 through
randomly selecting half of the categories of Kinetics-400.

Diving48. Diving48 [53] is a fine-grained video dataset
comprising approximately 18,000 trimmed video clips of 48
unambiguous dive sequences in competitive diving. Due to
the diverse sub-poses distributed throughout the timeline in
the dive sequences, it is crucial to capture the local sub-poses
over time. The dataset provider has manually cleaned dive
annotations, removing poorly segmented videos. We conduct
experiments using the official train/validation split V2 on the
updated version of the dataset.

EGTEA Gaze+. EGTEA Gaze+ [54] offers approximately
10,000 samples of 106 non-scripted daily activities that occur
in a kitchen and provides researchers with a first-person per-
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TABLE I
PERFORMANCE COMPARISONS WITH DIFFERENT ACTION RECOGNITION FRAMEWORKS ON STH-STH V1&V2 AND MINI-KINETICS DATASETS.

Method Sth-Sth V1 Sth-Sth V2 Mini-Kinetics
Acc 1.(%) ∆Acc 1.(%) Acc 1.(%) ∆Acc 1.(%) Acc 1.(%) ∆Acc 1.(%)

TSM 45.5 +1.7 59.3 +1.0 75.9 +0.7TSM+SV-Mix 47.2 60.3 76.6
R(2+1)D 45.9 +0.8 58.9 +1.4 75.5 +0.6R(2+1)D+SV-Mix 46.7 60.3 76.1
MViTv2 57.0 +0.9 67.4 +1.2 79.3 +0.2MViTv2+SV-Mix 57.9 68.6 79.5

TABLE II
PERFORMANCE COMPARISONS ON RELATIVELY SMALL-SCALE DATASETS INCLUDING UCF101, DIVING48 AND EGTEA GAZE+.

Method UCF101 Diving48 EGTEA GAZE+
Acc 1.(%) ∆ Acc 1.(%) Acc 1.(%) ∆Acc 1.(%) Acc 1.(%) ∆Acc 1.(%)

TSM 85.2 +3.2 77.6 +2.6 63.5 +2.0TSM+SV-Mix 88.4 80.2 65.5
MViTv2 90.0 +2.2 80.7 +3.1 66.5 +1.3MViTv2+SV-Mix 92.2 83.8 67.8

spective. Unlike Something-Something and Diving48 datasets,
EGTEA Gaze+ is filmed from a first-person point of view.

UCF101. The UCF101 [55] dataset comprises 13,320
videos with 101 classes in the wild. Due to its limited size,
video models trained on UCF101 may lean towards overfitting.
Therefore, UCF101 is suitable for measuring the effectiveness
of video data augmentations.

B. Implementation Details

Baseline model. We evaluate the effectiveness of SV-Mix
on both CNN and tranformer models. Among CNN models,
we choose one 2D CNN based model, i.e. TSM [56] and
one decomposed 3D CNN based model, i.e. R(2+1)D [25]
because the core modules, i.e., temporal shift and 1D tem-
poral convolstion are widely adopted as key components to
construct other advanced CNN video models. Besides CNN
video models, we also demonstrate the merits of SV-Mix
on sophisticated transformer model, e.g., MViTv2 [4]. For
efficiency consideration, we adopt ResNet-50 [57] as the
backbone to construct TSM and R(2+1)D, as for MViTv2,
we choose MViTv2-S as the baseline model.

Training. Following the common setting [20], we uniformly
sample 8 or 16 frames from input videos for all datasets.
As for resolution, we resize the short-side of frames to 256
maintaining the aspect ratio and then crop a 224×224 patch out
of resized frames. Data augmentations used by baseline model
such as random scaling before cropping and random horizontal
flipping (for TSM and R(2+1)D) and RandAugment [42] (for
MViTv2) are also adopted, unless otherwise statement. For
CNN models, we train the network via SGD optimizer and
we set the learning rate (lr) as 0.01 × batchsize

32 . The total
training epoch is set as 50 for all datasets. At epoch 20, 40,
we decay lr by multiplying 0.1. The dropout ratio is set as
0.5. The backbone ResNet is pre-trained on ImageNet. As for
transformer models, we adopt AdamW [58] instead of SGD
and set lr as 2e−4× batchsize

32 . We train transformer models for
60 epochs for Something-Something datasets and 50 epochs
for other datasets. Cosine learning rate schedule is adopted
with 5 warmup epochs.

Inference. We sample 8 frames per video for CNN models
and 16 frames for MViTv2. We utilize 224 × 224 central
crop and 1 clip × 1 crop for testing CNN models except on
UCF101, where we using 256 × 256 × 2 clip × 3 crop. We
use 224 × 224 central crop to test MViTv2, test views is set
as 3 crops × 1 clip on Something-Something, 2 clip × 3 crop
on UCF101 and 1 clip × 1 crop for others

C. The Effectiveness of SV-Mix (RQ1)

Something-Something and Mini-Kinetics. We empirically
evaluate the effectiveness of adopting SV-Mix on various
video models using the Something-Something dataset in Table
I. It can be observed that our proposed SV-Mix not only
enhances the generalization ability of classical CNN models,
i.e. TSM and R(2+1)D with obvious margins, but also sig-
nificantly boosts the performance of the advanced MViTv2
model. Particularly, SV-Mix improves the performance of
TSM by 1.63% on Something-Something V1 and 0.91% on
Something-Something V2. As for R(2+1)D, equipping SV-Mix
achieves smaller 0.80% gain on Something-Something V1, but
it increases to 1.37% when applied to Something-Something
V2. When adopted to advanced MViTv2 which achieves
SOTA performance, our SV-Mix still improves MViTv2 by
0.82% on Something-Something V1 and 1.13% on Something-
Something V2. It is worth noting that the improvements of
SV-Mix on Something-Something V2 are larger than those on
Something-Something V1 for R(2+1)D and MViTv2, despite
the former having less of an overfitting problem due to its
double size. On Mini-Kinetics dataset which relies more on
spatial appearance patterns to be correctly recognized, SV-
Mix illustrates consistent effectiveness on TSM, R(2+1)D and
MViTv2. Specifically, SV-Mix enhances TSM and R(2+1)D
to reach 76.6% and 76.1% on Mini-Kinetics which are 0.7%
and 0.6% higher than the baselines. On MViTv2, SV-Mix
demonstrates a minor increase in performance (+0.2%) com-
pared with other baseline, we speculate that the reason for this
phenomenon is due to the fact that Kinetics dataset primarily
focuses on spatial features, while the MViTv2 as a powerful
image backbone that utilizes advanced image pre-training
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TABLE III
PERFORMANCE COMPARISONS BETWEEN SV-MIX AND OTHER DATA AUGMENTATION STRATEGIES ON UCF101 AND STH-STH V1 DATASETS.

Model w/ Aug UCF101 Sth-Sth V1
Acc 1.(%) ∆Acc 1.(%) Acc 1.(%) ∆Acc 1.(%)

TSM 85.2 - 45.5 -
+Mixup [10] 84.7 -0.5 44.6 -0.9
+Cutmix [9] (VideoMix [45]) 86.9 +1.7 45.7 +0.2
+Cutmix&Mixup 87.0 +1.8 45.4 -0.1
+Cutout [59] - - 44.7 -0.8
+Augmix [60] - - 46.2 +0.7
+RandAug [42] 87.5 +2.3 - -
+SV-Mix 88.4 +3.2 47.2 +1.7
+SV-Mix+RandAug 89.6 +4.4 - -
MViTv2 90.0 - 57.2 -
+Cutmix&Mixup 91.6 +1.6 57.0 -0.2
+SV-Mix 92.2 +2.2 57.9 +0.7

techniques, limits the potential improvement in downstream
tasks that emphasize spatial perception by data augmentation.

Other Datasets. We conducted further evaluations of SV-
Mix on datasets with relatively small sizes, including UCF101,
Diving48, and EGTEA Gaze+ in Table II. Compared to larger
datasets such as Something-Something V1&V2, these datasets
tend to suffer from more severe overfitting problems. As a
result, the performance gains of SV-Mix are more significant
on these datasets. Specifically, SV-Mix boosts the perfor-
mance of TSM by 3.2%, 2.6% , 2.0% on UCF101, Diving48
and EGTEA GAZE+, respectively. On stronger MViTv2, the
improvements are still significant: 2.2%, 3.1% , 1.3% on
UCF101, Diving48 and EGTEA GAZE+, respectively.

D. Comparison with Other Augmentation (RQ2)

We compare our proposed SV-Mix with advanced data
augmentation methods, as these methods are design for image
augmentation, we simply expand them into video version by
conducting the same augmentation in all frames, as most works
do [4], [5], [61], [62]. We conduct comparison using TSM and
MViTv2 on UCF101 and Something-Something V1. As shown
in Table III, simply deleting (i.e. Cutout [59]) or exchanging
(i.e. Cutmix/VideoMix [9], [45] 1) a random spatial region
bring little improvement or even decrease the recognition
accuracy, we infer it may due to core motion area missing
cause by these two methods. Mixup [10] which blurs the whole
frame also brings no consistent enhancement on recognition
accuracy. Augmix [60] which mixes several augmented views
of one video sample and RandAugment [42] which randomly
selects augmentations from a pre-defined augmentation set
significantly boost the performance as they enrich the training
diversity and maintain the core motion pattern. Compared with
methods with sample mixing [9], [10] and Cutout [59], our SV-
Mix perform much better consistently because of the motion
pattern selection capability (spatial/temporal selective module)
and better sample diversity (random volume partition).

1It is worth notice that VideoMix [45] explore the adaption of Cutmix [9]
in video recognition and propose to cut the same regions for all frames in
the video. Because this strategy simply inflates Cutmix along the temporal
dimension, we refer to VideoMix as Cutmix in the following part of this
paper as popular projects do [61], [62].

TABLE IV
ABLATION STUDY OF SPATIAL SELECTIVE MODULE AND TEMPORAL

SELECTIVE MODULE IN SV-MIX ON STH-STH V1 DATASET.

Model w/ Mixups Sth-Sth V1
Acc 1.(%) ∆Acc 1.(%)

TSM 45.5 -
+Cutmix 45.7 +0.2
+Spa. Select 47.0 +1.5
+Mixup 44.6 -0.9
+Temp. Select 46.6 +1.1
+Mixup&Cutmix 45.4 -0.1
+Temp.&Spa. Select 47.2 +1.7

TABLE V
PERFORMANCE COMPARISON BETWEEN DISENTANGLED TRAINING AND

ENTANGLED TRAINING ON STH-STH V1 DATASET.

Mix Module En DisEn Top1(%)
TSM — — 45.5

+Spa. Select ✔ 45.6
✔ 47.0

+Temp. Select ✔ 45.2
✔ 46.6

+Temp&Spa. Select ✔ 45.8
✔ 47.2

E. Ablation Study (RQ3)

In this subsection, we demonstrate ablation studies of SV-
Mix to verify the merits of our design choose, including the ef-
fectiveness of spatial/temporal selective module, disentangled
training and the robustness under hyperparameter changing.

Spatial/temporal selective module. For better understand-
ing about how the components of SV-Mix influence the
performance of action recognition, we ablate spatial selective
module and temporal selective module in Table IV, as well

TABLE VI
EFFECTIVENESS OF λ EMBEDDING AND LM .

Mix Module λ Em. LM Top1(%)

TSM — — 45.5

+SV-Mix

✘ ✘ 45.1
✔ ✘ 46.9
✘ ✔ 45.9
✔ ✔ 47.2
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entangled training

Orig. vid.

Mixed vid.

(a) Spatial selection

(b) Temporal selection (best view in color)

Video A Video B 
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Video A 

Fig. 5. Instance visualization of mixing two videos labeled as “Pretending to
close sth” (Video A) and “Tearing sth into two pieces” (Video B). We compare
mix videos generated by spatial selective module and temporal selective
module under disentangled training and entangled training to verify the
importance of training disentanglement. Both spatial and temporal selective
modules fail to capture the informative spatial/temporal volumes and mix
video samples in a uniform manner.

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT ENSEMBLE STRATEGIES AND

PARAMETER SHARING SETTINGS OF SPATIAL/TEMPORAL SELECTIVE
MODULES.

Mix Module Prob. En. Para. Share Top1(%)

TSM — — 45.5

+SV-Mix

✘ ✘ 45.9
✔ ✘ 46.2
✘ ✔ 47.0
✔ ✔ 47.2

as compare them with vanilla TSM model and their counter-
parts, i.e. CutMix [9] and Mixup [10]. As shown in Table
IV, individual spatial selective module or temporal selective
module already enhances the performance of TSM model
(+1.52% and +1.10% respectively) which significantly out-
perform their non-parameter counterparts. Further ensembling
spatial selective module and temporal selective module by
random switching boosts the performance improvement to a
higher level (+1.75%).

Disentangled training. We compare the proposed disen-
tangled training pipeline with the intuitive entangled training
pipeline using something-something V1 dataset. These two
training strategy are conducted on spatial selective module,
temporal selective module and the full SV-Mix. As shown
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Fig. 6. The accuracy curve of SV-Mix with different α for the beta distribution
λ ∼ Beta(α, α) on UCF101 dataset.

in Table V, disentangled training consistently outperforms
intuitive entangled training under different mix module set-
tings by substantial margins (+1.4%). To illustrate the contrast
between the two training strategies more vividly, we provide
comparison between mixed video samples generated by spa-
tial/temporal selective module trained under these two training
strategies. As shown in Figure V (a), trained by disentangled
pipeline, spatial selective module keeps the fingertip actions
areas that are highly correlated with the label “Tearing sth
into two pieces” in video B for mixed sample generation.
As a contrast spatial selective module fall into sub-optimal
where videos are uniformly mixed across spatial regions. In
temporal volume selection, similar phenomenon is observed.
Specifically, as illustrated in the first row of Figure V (b), when
trained by disentangled pipeline, temporal selective module is
able to identify the first few frames in video A and the last
few frames in video B as the informative frames which should
be assigned with higher weights in the mixed video. When
optimized by entangled training strategy, temporal selective
module assigns similar weights for all frames and then fails
to emphasize the informative frames in the mixed sample.
λ embedding & LM. By embedding λ into the volume

features through concatenation, SV-Mix is capable to control
the mixing proportion of video samples. Additionally, LM
provides explicitly guidance for SV-Mix to build correlation
between λ and mixed training samples. The effectiveness of
λ embedding and LM is illustrated in Table VI. In particular,
in the absence of λ embedding and LM, SV-Mix fails to
improve the recognition performance (45.5% → 45.1%). This
failure is attributed to the dissociation between the mixed
samples and the predefined sample proportion λ, which results
in the misalignment between the mixed samples and the mixed
labels. With λ embedded in the input, SV-Mix boosts the TSM
to reach 46.9% and the introduction LM further enhances the
model to 47.2%.

Ensemble strategies and parameter sharing. We conduct
performance comparison of different ensemble strategies and
parameter sharing of spatial and temporal selective modules.
As illustrated in Table VII, using shared parameters of spatial
and temporal selective modules consistently outperforms un-
shared parameters settings. In addition, probabilistic ensemble
(Eq 9) of spatial and temporal selective modules provide slight
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Label: Lifting one end of 
something, then let it down

Label: Pushing something 
so that it sightly moves

Label: Poking something 
slightly

Label: Moving sth and sth
closer to each other

Fig. 7. Two examples of augmented video by spatial selective module on Sth-Sth V1 dataset. (a) Upper row: category Lifting one end of something, then let
it down. Middle row: category Pushing something so that it sightly moves. Lower row: the mixed video sample with 35% top label plus 65% middle label.
(b) Upper row: category Poking something slightly. Middle row: category Moving something and something closer to each other. Lower row: the mixed video
sample with 32% top label plus 68% middle label.

improvements over average ensemble (Eq 8).

Distribution of λ. We further explore the influence of
different distribution of λ by varying the α value which de-
termines the distribution of λ as λ ∼ Beta(α, α). The results
on UCF101 dataset are shown in Figure 6. The probability
density of Beta distribution has a higher value around 0.5 when
α > 1, indicating that input samples have closer proportions
in the mixed sample. As α decreases to lower than 1, the
proportions of samples become more diverse. We evaluate the
performance of spatial selective module and temporal selective
module using TSM as backbone on α = {0.2, 0.5, 1, 2, 3}
and α = {0.2, 0.5, 0.8, 2, 3} respectively. As shown in Figure
6, temporal selective module and spatial selective module
demonstrate significant and robust performance improvement
under different λ distribution, especially compared with mixup
[10]. The performance of spatial selective module decreases
when α goes lower than 1, which may be due to the fact that
when α is lower than 1, the spatial selective module selects
smaller spatial regions that may not contain complete motion
regions, leading to semantic ambiguity in the training data-
label pairs. In contrast, the performance of temporal selective
module improves with smaller α. There may be two reason
for this phenomenon, 1) temporal selective module select the
whole frame instead of a small spatial region; 2) actions in
UCF101 can be recognized using only a few frames. Notably,
in other experiments, we fixed α as 0.8 and 1 for temporal
and spatial selective module respectively, although adjusting
α may lead to a slight improvement.

F. Analysis and Visualization

To demonstrate how SV-Mix works, we provide examples
of mixed sample instances generated by the spatial selective
module and temporal selective module. Figure 7 (a) shows
the mixing process of two videos with label “Lifting one end
of something, then let it down” (upper row) and “Pushing
something so that it sightly moves” (middle row) respec-
tively. Spatial selective module successfully selects patches
that contain the interaction of “hand” and “mirror” in 4th
∼ 7th frames. Figure 7 (b) demonstrates mixing a video with
label “Moving something and something closer to each other”
(middle row) into a video labeled “Poking something slightly”
(upper row), spatial selective module captures the region
importance of both videos and maintains salient patches in the
mixed video. It is worth noting that, unlike Cutmix, which sets
the same proportion for all frames, our spatial selective module
has a dynamic proportion for different frames, even though
it does not contain any temporal module. For example, the
proportion for the video in the middle row increases in 2rd ∼
8th frames since the core “pushing” action is more significant
in the later frames. This phenomenon demonstrates the merit
of the spatial selective module, which not only captures the
spatial saliency but also takes motion semantics into account
for mixed video sample generation.

Unlike spatial selective module, our temporal selective mod-
ule arranges whole frames and maintains the spatial pattern
unchanged. We visualize the dynamic weights it assigns for
different frames as well as the mixed video samples. Figure
8 (a) demonstrates the mixing process of a video labeled
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Fig. 8. Two examples of augmented video by temporal selective module on Sth-Sth V1 dataset. Upper row: the predicted attention weights of the frames
from two videos. Middle two rows: the frames with high attention weights of the two input videos. Lower row: the mixed video sample.
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Fig. 9. Accuracy-epoch curves with different data augmentation strategies on
Sth-Sth V1 dataset. The model with SV-Mix shows the faster convergence
speed and better performance.

“Moving part of something” (upper row) and a video labeled
“Lifting a surface with something on it but not enough for it
to slide down” (middle row). Our temporal selective module
selects the 1st ∼ 3rd frames and 7th ∼ 8th frames from the
“Moving part of something” video because these frames show
the start of the action (hand on the handle, pretend to push)

and the end of the action (opened drawer), respectively. For the
“Lifting a surface with something on it but not enough for it
to slide down” video, our temporal selective module correctly
selects the frames that capture the process of the surface being
lifted. While in Figure 8 (b), a video labeled “Touching part
of something” (middle row) is mixed into a video with label
“Pretending to scoop something up with something” (upper
row), our temporal selective module assigns high weights for
the first 3 frames of video in middle row and low weights
for the rest of this video because the motion information is
concentrated in the first 3 frames.

We conducted further exploration on the model’s training
state under different data augmentation methods. The results,
as shown in Figure 9, indicate that simple Cutmix and Mixup
methods slow down the model convergence (i.e., 10∼20
epochs) and stabilize the training process (i.e., 20∼25 epochs),
but they don’t bring significant performance improvements. In
contrast, our SV-Mix and its components (i.e., spatial selective
module and temporal selective module) exhibit no convergence
issues and even accelerate the model training at an early
stage. Moreover, our SV-Mix and its components outperform
competing methods by wide margins.
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V. CONCLUSION AND LIMITATION

We have presented SV-Mix augmentation, which provides
a learnable data augmentation strategy for video action recog-
nition. Particularly, we formulate the learnable video mixing
process as the attention mechanism across volumes from two
videos. The volumes with the most distinctive content com-
pared with another video are treated as informative volumes,
which should be maintained in the mixed video. To materialize
our idea, we devise spatial selective module and temporal
selective module to seek the valuable volumes on patch level
and frame level, respectively. By randomly choosing one of
the two modules, SV-Mix can produce both spatially mixed
video and temporally mixed video. The modules in SV-Mix
are jointly optimized with the subsequent action recognition
framework in a novelly designed disentangled manner. The
results of SV-Mix on five action recognition datasets demon-
strate a consistent improvements across different benchmarks.
Furthermore, as shown in the experiments with different
recognition frameworks, SV-Mix demonstrates good potential
to benefit a large range of neural networks from 2D CNNs,
3D CNNs to video transformers.

This study investigates the effectiveness of volume selection
in action recognition. However, there remains an outstanding
issue regarding the efficiency of SV-Mix. The disentangled
training pipeline of SV-Mix necessitates multiple forward
propagations of the backbone model, which results in longer
training time. Efficient volume selection based video data
augmentation is left for our future research and improvement.
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