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ABSTRACT
Video data are distinct from images for the extra temporal dimen-
sion, which results in more content dependencies from various
perspectives. It increases the difficulty of learning representation
for various video actions. Existing methods mainly focus on the
dependency under a specific perspective, which cannot facilitate
the categorization of complex video actions. This paper proposes
a novel selective dependency aggregation (SDA) module, which
adaptively exploits multiple types of video dependencies to re-
fine the features. Specifically, we empirically investigate various
long-range and short-range dependencies achieved by the multi-
directionmulti-scale feature squeeze and the dependency excitation.
Query structured attention is then adopted to fuse them selectively,
fully considering the diversity of videos’ dependency preferences.
Moreover, the channel reduction mechanism is involved in SDA
for controlling the additional computation cost to be lightweight.
Finally, we show that the SDA module can be easily plugged into
different backbones to form SDA-Nets and demonstrate its effec-
tiveness, efficiency and robustness by conducting extensive experi-
ments on several video benchmarks for action classification. The
code and models will be available at https://github.com/ty-97/SDA.
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1 INTRODUCTION
Capturing content-related dependencies is of central importance in
such as natural language processing (NLP) [41], image processing
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Poking a hole into dough

t

(a)

(b)

["Inward", "25som", "NoTwis", "PIKE”]

Figure 1: Sampled clips from Diving48 (top) and Something-
Something (bottom). To understand the dive [“Inward”,
“25som”, “NoTwis”, “PIKE”], aggregating sub-poses in the
dive sequences, which can be regarded as long-range tem-
poral dependency modeling, is crucial. As for recognizing
“Poking a hole into dough”, Long-range temporal depen-
dency and short-range spatial interactions are needed.

[4], and the studied action classification [43]. Unlike the processing
on one and two dimensional signals, i.e., the language sequence
and the static image, modeling and utilizing dependencies on 3D
video signals are more challenging in action classification and other
downstream tasks such as video retrieval [48, 49] and content anal-
ysis [1, 29, 35, 50, 51]. The difficulties mainly lie in two aspects.
First, the 3D dynamic nature inherently widens the sphere of ac-
tions with an order of magnitude larger than the 2D static vision,
resulting in multiple dependencies across space and time dimen-
sions. While in contrast, the language/image data mostly exhibit
long-rang/-distance modeling. However, existing dependency mod-
eling methods mainly leverage the dependency under a specific
view, such as temporal (i.e. TEA [24] and TPN [47]) and global
(i.e. S3D-G [46] and non-local network [43]) perspectives. Conse-
quently, how to organize those various spatio-temporal dependen-
cies based on video contents is a key problem. Second, video neural
network models (e.g., C3D [38] and I3D [5]) commonly contain
much more parameters and are hard to train. Further deepening the
model (e.g., I3D [5]) or adding pairwise spatio-temporal attentions
(e.g., Non-local network [43]) to capture long-range dependency
will additionally incur significant computational burden. How to
significantly reduce the extra computational cost is another key
consideration.

Dependencies between video contents reflect the relationships
among the 3D spatio-temporal variations, which can be long-range
(i.e., the whole video) and short-range (i.e., local part of the video)
in space, time and space-time. Generally, those multi-dependencies
contribute unequally to action classification, since the semantic
categories in different videos rely on different content interactions.
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For example, in Figure 1, the diving video needs to aggregate the
sub-poses in dive sequences along the timeline for action model-
ing. Whereas, the recognition of the action “Poking a hole into
a dough” requires both short-range spatial (i.e., the interactions
between objects of dough, spoon and hand), and long-range tem-
poral (i.e., motion dependencies over the whole time) modeling.
These examples show clues that different videos may rely on dif-
ferent content-related dependencies, and properly capturing those
dependencies can benefit the video categorization.

Towards the aforementioned challenges in action classification,
we propose the selective dependency aggregation (SDA) mod-
ule, an efficient and effective plug-and-play module for extract-
ing and organizing multiple content-related dependencies with a
low computation cost. Specifically, it mainly consists of a multi-
dependency modeling (MDM) block and a dependency aggregation
(DAG) block, where the MDM block is designed for modeling var-
ious space-time dependencies from input video features and the
DAG block is for aggregating these dependencies. It is worth noting
that before the dependency modeling, we initially perform channel
reduction for memory and computation efficiency.

In MDM, we propose to squeeze a given 3D spatio-temporal
feature along different directions and with multiple scales to ob-
tain multiple spatio-temporal dependencies (e.g., long-range, short-
range). As described in the squeeze-and-excitation network (SE-Net)
[19], the dependency feature here is referred to as the information
aggregated from a specific receptive field of the input feature. For
example, when shrinking the feature across space and time, the
dependency feature is a vector where the global spatial-temporal
content is stored [46]. As a contrast, if we pool the feature us-
ing a kernel with small size, elements in the dependency feature
cube thus represent local relations. Through changing the recep-
tive filed, we can obtain multiple dependency features. To achieve
the goal of efficient modeling, we build our dependency modeling
operation as a simple and general cascaded structure of “feature-
squeeze→ dependency-excitation”. The “feature-squeeze” opera-
tion (e.g., pooling layer) is for providing the dependency feature
and the “ dependency-excitation” operation (e.g. FC layer or con-
volution layer followed by an activation function) is for modeling
the feature-level dependencies from the squeezed features. Hence,
various dependencies are modeled fully and properly.

In DAG, considering the fact that different videos exhibit dif-
ferent dependencies, the ability of dynamic selection for multiple
dependencies is needed for better action understanding. To this
end, we use the query structured attention (QSA) [26] to adap-
tively assign weights to different dependencies and combine them
with a weighted sum of dependency responses. The QSA changes
the “query” in transformer [41] to a learnable vector and treats
the input itself as “key” and “value” for computation efficiency.
Finally, the combined dependency representation is projected to
a tensor of the same size as the original input video feature, and
regularized through the Sigmoid function to produce a collection
of element-wise modulation gating weights. These weights are ap-
plied to reweight the input feature by element-wise production.
The SDA module is densely inserted into each residual block of the
existing video networks to achieve layer-wise feature refinement.

We summarize our contributions as below:

• We propose to model multiple dependencies, including var-
ious long-range and short-range variants, facilitating the
feature refinement of video features.

• We construct a dependency aggregation block, where the
QSA method is adopted to dynamically assign attention
weights to those dependencies. So that the most helpful de-
pendency can be emphasized with a higher weight according
to the video contents.

• Our proposed SDA module is a plug-and-play unit and can
be conveniently inserted into the off-the-shelf action classifi-
cation models such as TSN [42] and TSM [27] without incur-
ring much overhead (i.e., 7.9%/3.0% extra parameters/FLOPs).
Moreover, experimental results on four benchmarks, includ-
ing Something-Something V1&V2, Diving48, and EPIC-KITCHEN-
55 datasets, show the effectiveness of our method.

2 RELATEDWORK
Deep videonetworks. As deep convolution networks have brought
great progress for static visual content modeling, various CNN-
based deep video architectures have been proposed to handle the
classification of video data.

The most classical works [9, 18, 21, 42] directly extend the suc-
cessful 2D CNNs for video recognition. Here, 2D convolutions are
simply employed to model static visual contents from separate
frames in different layers. Then, they fuse the extracted features
across frames to achieve temporal modeling. For example, Karpathy
et al. [21] attempt to averagely pool the frame-level CNN features at
different stages (e.g., early and late) for the clip-level result. Yue-Hei
et al. [52] input the frame features extracted from 2D CNN into
the recurrent neural network (RNN), e.g., LSTM [18], to organize
the temporal orders. Donahue et al. [9] further explore to train
the “CNN+RNN” model in an end-to-end fashion. Later, tempo-
ral segment network (TSN) [42] proposes to fuse the per-frame
prediction scores with a segmental consensus function. Tempo-
ral relation network (TRN) [54] replaces the pooling operation of
TSN with multi-layer perceptrons. Although these networks are
computational friendly, they mainly focus on spatial modeling and
hence perform less satisfactorily on videos requiring more temporal
modeling.

Current models [5, 38] propose to design 3D spatio-temporal
units to jointly process spatial and temporal signals in each layer.
The most general spatio-temporal unit is the 3D convolution. Specif-
ically, C3D [38] simply expands the kernel slides of the 2D sptial
convolutions in such as ResNets [17] to 3 dimensions (i.e., space
and time). I3D [5] initializes the 3D convolutions by inflating the
2D convolutions pretrained on ImageNet [34] to benefit the deeper
model training. Moreover, V4D [53] even adopts 4D convolution
to additionally capture the interactions among sub-clips. As the
3D/4D convolutions incur a huge number of parameters, research
efforts [12, 33, 40, 46] have shifted to seek lightweight alternatives
for the above heavy computational units. For example, P3D [33],
R(2+1)D [40] and S3D [46] decompose the 3D convolution into the
cascade of 2D spatial convolution and 1D temporal convolution,
resulting in significant complexity reduction and performance im-
provement. SlowFast [12] further introduces two CNN paths to
operate on different sampling frequencies and focuses on only the
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temporal relations (i.e., slow and fast movements) without consid-
ering much on the spatial dependencies. In addition, GST [31] and
CSN [39] use group convolutions to separate channel interactions
and spatio-temporal interactions, achieving much more efficient
models. X3D [11] expands a tiny 2D CNN to facilitate processing
3D signals by stepwise searching for optimal settings for space,
time, width and depth.

Except the above pure convolution-based spatio-temporal units,
there are also some shift-based units that are almost parameter-free.
TSM [27] replaces the 1D temporal convolution in such as R(2+1)D
with the temporal shift of partial channels, where its effectiveness
has been demonstrated in both action recognition and detection sce-
narios [15]. GSM [37] extends TSM with learnable shift parameters
and uses the channel decomposition to further reduce parameters.
Moreover, RubikShift [10] even tries to replace all convolutional
filters with lightweight spatial/temporal shift operations.

Dependency modeling. Dependency is of crucial importance
in signal processing, scanning fromnatural language processing(NLP),
image processing, to video understanding.

To aggregate long-range dependency between various corpus,
RNN-base models, long short-term memory (LSTM) [18] and gated
recurrent [7] neural networks in particular, are proposed. With the
inherent ability of remembering the long sequence, these methods
succeed in modeling long-range dependency for NLP tasks such
as language modeling and machine translation [2, 6]. However,
RNN-based models fail to encode sequential data in parallel, and
hence require more time to train. To overcome the limitation, Self-
Attention [41] which relies entirely on an attention mechanism
to draw global dependencies and allows for significantly more
parallelization, has been introduced to compute representations
for long-length sequences and achieves very promising results on
various NLP tasks.

As for image processing, traditional architectures grip the short-
range dependency by sliding convolutional kernel with limited
receptive field and the long-range dependency by stacking convolu-
tions in an implicit manner [13, 22]. Later researchers design extra
dependency modeling units to tackle this problem explicitly. SE-Net
[19] is proposed to refine the learnt image feature layer by layer
through plugging in a squeeze and excitation module upon the
global dependency aggregated by global average pooling. CBAM
[45] additionally considers the content-based dependency from the
spatial perspective. Facing more complex dependencies between
video contents, the non-local operator [43] models long-range de-
pendency by computing a neural response of the local receptive
field as a weighted sum of features across all spatio-temporal posi-
tions on the 3D feature map. As two sides of a coin, the non-local
network is effective but suffers from heavy computation due to
the pairwise distance calculation across a spatio-temporal feature
cube. Besides, to model the long-range spatio-temporal dependency
efficiently, S3D-G [46] aggregates long-range dependency through
squeezing global spatio-temporal contexts along the channel di-
mension and refine the learnt feature of S3D under the long-range
context dependency in a self-gating attention manner. TEA [24]
extends SE-Net [19] proposed for image processing to enhance
models with aggregated temporal context, while TPN [47] boosts
the TSM [27] by aggregating the information of various visual
tempos at the feature level. These methods only view the complex

dependencies from a specific perspective, leaving the problem of
simultaneously modeling of multiple dependencies unexplored.
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Figure 2: Framework of the proposed SDA module.

3 SELECTIVE DEPENDENCY AGGREGATION
Our selective dependency aggregation (SDA) module consists of
two blocks, i.e., the multi-dependency modeling (MDM) block and
the dependency aggregation (DAG) block. Below, we elaborate on
the designing of the two blocks and also give an analysis to model
complexity for SDA. Generally, we integrate the SDA unit to a
residual block of ResNets. Figure 2 illustrates the framework of the
proposed SDA.

3.1 Multi-dependency Modeling
The MDM block obtains multiple space-time dependencies from
a given video feature tensor Y ∈ R𝑇×𝐻×𝑊 ×𝐶 outputted by such
as a convolution layer. To avoid introducing much computational
burden, a convolution layer followed by a ReLU activation func-
tion, particularly, is used to reduce the dimensions of channel 𝐶
controlled by a hyperparameter 𝑟𝑐 , yielding a new feature tensor
Y′ ∈ R𝑇×𝐻×𝑊 × 𝐶

𝑟𝑐 . As the proposed MDM block can work upon
any given 4D video feature, we present it in a general fashion.

Given Y′ as input, MDM outputs a set of dependency representa-
tions {𝑹1, 𝑹2, · · · , 𝑹𝑀 }, where𝑀 denotes the number of considered
dependencies. Formally, we have

{𝑹1, 𝑹2, · · · , 𝑹𝑀 } = MDM
(
Y′) . (1)

The calculations of different dependency representations share
a similar pipeline of “feature-squeeze→ dependency-excitation”.
Specifically, we instantiate the “feature-squeeze” with an average
pooling operation. Considering the space-time attribute of Y′, we
can pool it along different directions (e.g., space dimension, time
dimension) and use different scales, referred to as multi-direction
multi-scale squeeze. For notation clarity, we use the pooling kernel
𝑊 𝑃𝑜𝑜𝑙

𝑝𝑡 ,𝑝ℎ,𝑝𝑤
= (𝑝𝑡 , 𝑝ℎ, 𝑝𝑤), where 𝑝𝑡 , 𝑝ℎ, 𝑝𝑤 denote the size of the

receptive field, to specify the average pooling operations. For exam-
ple, if we set (𝑝𝑡 , 𝑝ℎ, 𝑝𝑤) = (𝑇,𝐻,𝑊 ), i.e., using the kernel𝑊 𝑃𝑜𝑜𝑙

𝑇 ,𝐻,𝑊
,
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we can obtain a 𝐶
𝑟𝑐

vector that represents the global information
squeezed across space and time. By applying the average pooling
operation denoted as 𝑃𝑜𝑜𝑙𝑎𝑣𝑔 over the input tensor Y′, the squeezed

feature A ∈ R
𝑇
𝑝𝑡

× 𝐻
𝑝ℎ

× 𝑊
𝑝𝑤

× 𝐶
𝑟𝑐 can be computed as follows

A = 𝑃𝑜𝑜𝑙𝑎𝑣𝑔

(
Y′;𝑊 𝑃𝑜𝑜𝑙

𝑝𝑡 ,𝑝ℎ,𝑝𝑤

)
. (2)

The squeezed feature provides statistical information squeezed in
a receptive field for dependency modeling. After obtaining the
dependency feature A, the task is reduced to how to excite the
dependency feature and form the dependency representation, i.e.,
“dependency-excitation”. Here, we use a convolution-based oper-
ation to achieve the dependency excitation. Similar to 𝑃𝑜𝑜𝑙𝑎𝑣𝑔 ,
the convolution function 𝐶𝑜𝑛𝑣3𝑑 is also specified by the kernel
𝑊𝐶𝑜𝑛𝑣

𝑐𝑡 ,𝑐ℎ,𝑐𝑤
= (𝑐𝑡 , 𝑐ℎ, 𝑐𝑤). As a result, given the dependency feature

A as input, we can compute the corresponding dependency repre-
sentation R ∈ R

𝑇
𝑝𝑡

× 𝐻
𝑝ℎ

× 𝑊
𝑝𝑤

× 𝐶
𝑟𝑐 as

R = 𝑅𝑒𝐿𝑈

(
𝐶𝑜𝑛𝑣3𝑑

(
A;𝑊𝐶𝑜𝑛𝑣

𝑐𝑡 ,𝑐ℎ,𝑐𝑤

))
. (3)

In this work, we focus on modeling both long-range and short-
range dependencies among video contents. Consequently, we sepa-
rately elaborate on the modeling of the two groups of dependencies
in the following parts.

Long-range dependency modeling. The long-range depen-
dencies reflect the relationships of video contents viewed from a
large spatial/temporal/spatio-temporal receptive field. This can be
achieved by firstly setting the pooling kernel as𝑊 𝑃𝑜𝑜𝑙

𝑇 ,𝐻,𝑊
for long-

range spatio-temporal dependency (LST),𝑊 𝑃𝑜𝑜𝑙
𝑇 ,1,1 for long-range

temporal dependency (LT),𝑊 𝑃𝑜𝑜𝑙
1,𝐻,𝑊

for long-range spatial depen-
dency (LS). These operations are similar to the works [19] and
[46]. In this case, we can obtain three kinds of squeezed depen-
dency features {A𝐿𝑆𝑇 ∈ R1×1×1×

𝐶
𝑟𝑐 ,A𝐿𝑇 ∈ R1×𝐻×𝑊 × 𝐶

𝑟𝑐 ,A𝐿𝑆 ∈
R𝑇×1×1×

𝐶
𝑟𝑐 } by Eq. (2). Afterwards, to model the dependencies

from these squeezed features, we accordingly adopt three con-
volutional/linear operations to mix the information across chan-
nels, yielding three corresponding dependency representations
R𝐿𝑆𝑇 ,R𝐿𝑇 ,R𝐿𝑆 as follows

R𝐿𝑆𝑇 = 𝑅𝑒𝐿𝑈

(
𝐶𝑜𝑛𝑣3𝑑

(
A𝐿𝑆𝑇 ;𝑊𝐶𝑜𝑛𝑣

1,1,1

))
,

R𝐿𝑇 = 𝑅𝑒𝐿𝑈

(
𝐶𝑜𝑛𝑣3𝑑

(
A𝐿𝑇 ;𝑊𝐶𝑜𝑛𝑣

1,3,3

))
,

R𝐿𝑆 = 𝑅𝑒𝐿𝑈

(
𝐶𝑜𝑛𝑣3𝑑

(
A𝐿𝑆 ;𝑊𝐶𝑜𝑛𝑣

3,1,1

))
, (4)

Notablely, the linear projection is implemented by the function of
𝐶𝑜𝑛𝑣𝑑3𝑑 with kernel𝑊𝐶𝑜𝑛𝑣

1,1,1 . The three dependency representations
{R𝐿𝑆𝑇 ,R𝐿𝑇 ,R𝐿𝑆 } will be further reshaped to have the same size
as the input feature Y′.

Short-range dependency modeling. In contrast to the above
long-range dependencies, the short-range dependency modeling
shifts the focus to the information squeezed in a local spatio-temporal
field. This can be achieved by setting a small receptive field for
𝑊 𝑃𝑜𝑜𝑙

𝑝𝑡 ,𝑝ℎ,𝑝𝑤
. By applying the local pooling operation on the video

feature map Y′, the dynamic information presented in a local area
can thus be squeezed, boosting the short-range dependency mod-
eling. Accordingly, based on Eqs. (2) and (3), we have the local

squeezed dependency feature A𝑆 and excited representation R𝑆 .
In the experiment, we empirically test three local pooling ker-
nels, i.e.,𝑊 𝑃𝑜𝑜𝑙

2,2,2 ,𝑊 𝑃𝑜𝑜𝑙
1,2,2 and𝑊 𝑃𝑜𝑜𝑙

1,4,4 , yielding three squeezed fea-
tures {A𝑆222,A𝑆122,A𝑆144} and three dependency representations
{R𝑆222,R𝑆122,R𝑆144}. We purposely use the convolution kernel
𝑊𝐶𝑜𝑛𝑣

1,1,1 for S222 to learn the channel interactions in A𝑆222, by con-
sidering the temporal pooling operation with𝑊 𝑃𝑜𝑜𝑙

2,2,2 . Differently,
since there is no temporal pooling in S122 and S144 and actions
in videos generally rely more on temporal modeling, we thus use
a temporal convolution with the kernel𝑊𝐶𝑜𝑛𝑣

3,1,1 to compute R𝑆122

and R𝑆144}. We further reshape these dependency representations
to the size 𝑇 × 𝐻 ×𝑊 × 𝐶

𝑟𝑐
by element copying.

3.2 Dependency Aggregation
We have modeled𝑀 long-range and short-range dependencies by
the MDM block. To leverage various dependencies in one resid-
ual block, the most intuitive way is averagely summing them up,
as shown in Figure 3(a). The final mixed representation R𝑎𝑣𝑔 ∈
R𝑇×𝐻×𝑊 × 𝐶

𝑟𝑐 is as

R𝑎𝑣𝑔 =
1
𝑀

𝑀∑
𝑖=1

R𝑖 . (5)

However, since different videos have different dependency pref-
erences, simple average aggregation may neglect the important
dependencies while keeping eyes on the trivial dependency. Based
on this, we adopt the query structured attention (QSA) proposed in
[16] to selectively combine these dependencies, which can automat-
ically emphasize important features by larger weights. We refer this
aggregation to as selective aggregation (SEC). Figure 3(b) illustrates
its pipeline. Specifically, a learnable “query” vector 𝒒 ∈ R1×

𝐶
𝑟𝑐 is

additionally introduced to guide the attention weights calculation,
and the “key” and “value” come directly from the input feature.
Given the dependency representation set {R𝑖 }𝑀𝑖=1 as inputs, the
attention “keys” are firstly computed by averagely pooling them
across space and time, resulting in a𝑀 × 𝐶

𝑟𝑐
matrix K. We thus can

compute the attention weight of each dependency representation
by

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝒒,K) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝒒 × K𝑇

)
. (6)

And the ultimate dependency representation R𝑠𝑒𝑐 ∈ R𝑇×𝐻×𝑊 × 𝐶
𝑟𝑐

is thus calculated as follows

R𝑠𝑒𝑐 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝒒,K) × V, (7)

where V = [R1;R2; · · · ;R𝑀 ]. As verified in [16, 26], despite the ef-
fectiveness in such as document and video representation learning,
QSA also enjoys fewer parameters than those in self-attention.

So far, we have clearly got the representation R𝑠𝑒𝑐 storing multi-
ple dependencies. Next, we increase the channel number 𝐶

𝑟𝑐
of R𝑠𝑒𝑐

to 𝐶 by passing it to a 3D convolution layer with kernel 1 × 1 × 1,
and project the value into range (0.0, 1.0) by a Sigmoid function.
Finally, we use the gating mechanism to calculate the output of
SDA by

Z = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣3𝑑 (R𝑠𝑒𝑐 ; 1 × 1 × 1)) ⊙ Y (8)

where ⊙ is the Hadamard product operator.
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Figure 3: Diagram of dependency aggregation block.

3.3 Integrated Model and Complexity Analysis
Our proposed SDA is a plug-and-play module. We evaluate it by
integrating into two simple deep video networks TSN [42] and
TSM [27] that are built upon the ResNet. To illustrate the compu-
tational burden associated with the module, we first consider the
comparison on number of parameters between the residual block
in ResNet-50 and the SDA module. The residual block contains
about 17𝐶2 parameters. While, there are two main parts, i.e., the
channel reduction/increase layers and the MDM block, that contain
parameters in SDA1 To be specific, the reduction/increase layers
have a total of 2

𝑟𝑐
𝐶2 parameters, and the sum in long-range de-

pendency modeling part is 13
𝑟 2𝑐
. Different pooling kernels does not

lead to different number of parameters in the short-range depen-
dency modeling part, and the value is 3

𝑟 2𝑐
for a single path. From the

above computations, the exact number of parameters is determined
by the hyperparameter 𝑟𝑐 . In the experiment, we will specifically
present the details of model complexity, including the numbers of
parameter and computation burden (FLOPs).

4 EXPERIMENT
We conduct experiments on different benchmark datasets, including
Something-Something V1&V2, diving-48, and EPIC-KITCHEN, for
action classification. The metrics are top-1 and top-5 precision.

4.1 Datasets
Something-Something. Something-Something datasets have 174
fine-grained action categories showing humans performing pre-
defined basic actionswith everyday objects which require the ability
of multiple dependencies aggregation of the model for classification.
The dataset has two versions, V1 [14] and v2 [32], and contain ~110k
(V1) and ~220k (V2) video clips. For the annotations of the test set
is not released, we report the performance on the validation set.

Diving48. Diving48 [25] is a fine-grained video dataset of com-
petitive diving which consists of ~18k trimmed video clips of 48
unambiguous dive sequences. As the dive sequence is composed
of diverse sub-poses which distribute along the timeline, the div-
ing recognition requires multiple spatio-temporal dependencies
1Here, we omit the parameters in DAG block as there is only a one dimensional query
vector needed to optimize.

modeling. The dataset provider has manually cleaned dive anno-
tations with poorly segmented videos removed recently. We con-
duct experiments on the updated version using the latest official
train/validation split V2.

Egocentric Video Datasets. EPIC-KITCHENS [8] provide re-
searchers with kitchen actions under first-person vision, involv-
ing rich human-object interactions in daily cooking activities. We
select the EPIC-KITCHENS-55 version and report the results of
both verb and noun classification which have different dependency
preferences, hence the classification model is required selective
dependency modeling ability to perform well in the both tasks. We
follow the train/validation splitting mechanism of [3]. The number
of action instances in the training and validating sets are 23,191
and 5,281 respectively.

4.2 Implementation Details
We insert the SDA block into various ResNet variants like TSN [42],
TSM [27]. We add a “BatchNorm” layer after each convolutional/FC
layer in SDA. To avoid extremely small size of channels for MDM,
we use 𝑀𝑎𝑥 ( 𝐶𝑟𝑐 , 16) to limit the channel size by a minimum of 16.
All models are implemented with Pytorch toolkit and run on 4×
2080Ti or 3090 GPUs.

Training. Following [42], we use uniform sampling to obtain
input video frames for all datasets. For resolution, we resize the
short-side of frames to 256 maintaining the aspect ratio and then
crop a 224×224 patch out of resized frames. We also adopt data
augmentations such as random scaling before cropping and random
horizontal flipping.

We train the network with a batch size 9 per GPU. For 8-frame
models, we set the learning rate (lr) as 0.01/0.015 for TSN/TSM
backbone. And for 16-frame models, the lr is set to 0.015. We train
50 epochs and decay lr by 0.1 at epoch 20 and 40. The dropout ratio
is set to 0.5. All backbone models are pre-trained on ImageNet.

Inference. In the ablation study, we sample one clip per video
and use the center 224×224 crop for comparison. In the evaluation,
we adopt testing augmentations as in [24, 27], which sample multi-
ple clips per video, and set test resolution as 224×224 resized from
256×256 crops. We specify testing augmentations in tables.

4.3 Ablation Study
In this section, we investigate the effectiveness of various dependen-
cies, mechanisms of dependency aggregation, and channel reduc-
tion ratio 𝑟𝑐 by implementing ablation studies on the Something-
Something V1 dataset using TSN as the backbone.

Firstly, we compare different dependency modeling mechanisms
with various pooling kernels and convolutional kernels in MDM
block. The two kernels jointly control the size of the receptive field,
leveraging different kinds of content dependencies. Specifically, we
set the pooling kernel𝑊 𝑝𝑜𝑜𝑙 as {𝑇 ×𝐻 ×𝑊,𝑇 × 1 × 1, 1 ×𝐻 ×𝑊 }
for long-range dependency modeling and𝑊 𝑝𝑜𝑜𝑙 as {2 × 2 × 2, 1 ×
2 × 2, 1 × 4 × 4} for short-range dependency modeling. Table 1
shows the performance comparison of these kernel settings. Over-
all, equipping the backbone network with the content dependencies,
regardless of their types, can significantly improve the performance
(+8.3%-+27.2%). The results verify our claim that action categoriza-
tion can be enhanced by video content dependencies. Particularly,
since different actions exhibit different long-range dependencies,
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Table 1: Performance comparison of different kernel sizes of
MDM block on the validation set of Something-Something
V1. Here, we fix the hyperparameter 𝑟𝑐 = 4.

Dependency ID Kernel size Acc.(%) #P FLOPs
𝑊 𝑃𝑜𝑜𝑙 𝑊𝐶𝑜𝑛𝑣 top-1 top-5

Original TSN 19.7 46.6 23.9M 32.9G

Long-range

LST 𝑇 ×𝐻 ×𝑊 1 × 1 × 1 28.0 58.2 24.6M 33.7G
LT 𝑇 × 1 × 1 1 × 3 × 3 35.4 67.8 25.2M 33.8G
LS 1 ×𝐻 ×𝑊 3 × 1 × 1 37.1 66.2 24.7M 33.7G
Aggregation (AVG): LST+LT+LS 46.3 74.8 25.5M 33.9G

Short-range

S222 2 × 2 × 2 1 × 1 × 1 28.2 59.0 24.6M 33.7G
S144 1 × 4 × 4 3 × 1 × 1 44.8 74.4 24.7M 33.7G
S122 1 × 2 × 2 3 × 1 × 1 45.9 74.8 24.7M 33.8G
Aggregation (AVG): S222+S144+S122 45.1 74.3 25.1M 33.8G

Aggregation (AVG): LST+LT+LS+S122 46.9 75.5 25.8M 33.9G

we observe that squeezing along space dimension (with the kernel
𝑊 𝑃𝑜𝑜𝑙

1,𝐻,𝑊
) and conducting temporal convolution (with the kernel

𝑊𝐶𝑜𝑛𝑣
3,1,1 ) obtains a better result than the other two long-range vari-

ants, and further averagely aggregating them achieves the higher
top-1 accuracy (46.3%). Among the results of short-range dependen-
cies, the setting of𝑊 𝑃𝑜𝑜𝑙

1,2,2 and𝑊𝐶𝑜𝑛𝑣
3,1,1 performs the best. A small

local receptive filed (𝑊 𝑃𝑜𝑜𝑙
1,2,2 ) is better than the larger one (𝑊 𝑃𝑜𝑜𝑙

1,4,4 ),
and the temporal convolution (𝑊𝐶𝑜𝑛𝑣

3,1,1 ) significantly outperform the
linear projection (𝑊𝐶𝑜𝑛𝑣

1,1,1 ). However, being different to the observa-
tion from long-range dependency modeling, the aggregation of the
three short-range dependencies results in a significant performance
drop, which is even worse than the single dependency counterpart
(45.1% vs 45.9%). This may because that all the three variants focus
on the same purpose of short-range dependency modeling. Besides
the demonstrated short-range dependency modeling strategy, more
complete comparison between different combinations of𝑊 𝑃𝑜𝑜𝑙

and𝑊𝐶𝑜𝑛𝑣 is shown in appendix. Based on the above analysis,
we also conduct a test by combing three long-range (i.e., LS, LT,
LST) and one short-range dependency (S122) and get the highest
performance 46.9%.

Secondly, we examine the results of different dependency aggre-
gations, as well as the settings of hyperparameter 𝑟𝑐 . As mentioned
above, we finally select four kinds of dependencies to model in
MDM. The four dependency representations will be then aggre-
gated to form a mixup in DAG block. 𝑟𝑐 specifies the complex-
ity of SDA module, and here we set 𝑟𝑐 = 2, 4, 8, 16. As shown in
Table 2, the proposed selective aggregation method consistently
outperforms the average counterpart with significant performance
improvements (+0.3%-+0.6%) among all the settings of 𝑟𝑐 . More-
over, increasing the value of 𝑟𝑐 greatly reduces the model size (e.g.,
number of parameters and FLOPs) but does not degrade the per-
formance much. Particularly, when setting 𝑟𝑐 = 4, the SDA-TSN
with the selective aggregation strategy achieves the performance
of 47.5%, only 0.1% lower than that when 𝑟𝑐 = 2. Considering the
trade-off between performance and model complexity, we set 𝑟𝑐 = 4
in this paper for performance report. Finally, our SDA module only
introduces 8% extra parameters and 3% extra FLOPs to the original
TSN model.

4.4 Comparison with State-of-the-Arts
Something-Something V1&V2. We report the top-1/top-5 per-
formances of SDA-TSN and SDA-TSM by comparing them with
the state-of-the-arts (SOTAs) in Table 3. We also list the model

Table 2: Performance comparison of different dependency
aggregation strategies and r𝑐 on Something-Something V1.
“AVG” denotes average aggregation and “SEC” denotes selec-
tive aggregation.

Settings acc.(%) #P FLOPsAggregation Stra. 𝑟𝑐 top-1 top-5
AVG 2 47.1 75.6 30.2M 35.3G
SEC 47.6 75.9 30.2M 35.4G
AVG 4 46.9 75.5 25.8M 33.9G
SEC 47.5 75.4 25.8M 33.9G
AVG 8 46.4 75.2 24.5M 33.5G
SEC 46.7 75.1 24.5M 33.5G
AVG 16 45.9 74.6 24.1M 33.3G
SEC 46.5 74.8 24.1M 33.3G

complexity, including the number of parameters and FLOPs, in the
table.

In general, our proposed SDA module enhances the performance
of TSN and TSM to a new stage which is better or comparable
among the competing methods. More specifically, with the inputs
of 8 frames, SDA boosts the performance of TSNwith a considerable
absolute improvement of 27.8% (19.7%→47.5%) on V1 and 30.6%
(30.0% →60.6%) on V2, making SDA-TSN competitive to the 3D
spatio-temporal models such as GST, V4D, STM and SmallBig.While
the improvement to TSM is relatively small: 3.0% (45.6%→48.6%)
on V1 and 2.1% (59.7%→61.8%) on V2. The variance between these
improvement scales lies in that TSN is built upon the standard
2D ResNet and just uses a pooling operation to achieve temporal
modeling, while TSM inherently has the ability of modeling spatio-
temporal relations. But from another viewpoint, it certainly offers
a strong evidence that SDA successfully models multiple depen-
dencies and greatly benefits the action classification for videos in
Something-Something datasets.

Compared to the SOTAs, our SDA-TSM model attains the high-
est top-1 accuracy of 52.8% on V1 and 65.4% on V2 with 16 frames
× 3 crops × 2 clips. The computational cost, e.g., FLOPs, is also
much lower than the most advanced TEA and SmallBig meth-
ods. For example, TEA requires 70.0G×3×10=2,100G FLOPs to get
the 52.3% top-1 accuracy on V1, while our SDA-TSM only needs
67.8G×3×2=406.8G FLOPs (19.4% of TEA’s). In addition, as sug-
gested in [27], we also report the ensemble results of 8-frame and 16-
frame models. As shown in the table, SDA-TSN𝐸𝑛 and SDA-TSM𝐸𝑛

achieve 52.6%/66.1% and 54.8%/67.3% on Something-Something
V1/V2, respectively.

Diving48. Since the new version of Diving48 has been thor-
oughly cleaned, we retest the performance of existing models C3D,
GST, TSN and TSM for a fair comparison. Table 4 shows the perfor-
mance comparison on the dataset, where all results are obtained
with the input of 8 sampled frames (224×224 center crop). Com-
pared with SOTAs that implement temporal modeling (i.e. temporal
convolution or temporal shift), TSN with a simple 2D architecture
also presents a relatively good result. This may suggest that the
recognition of continuous diving can be achieved by a simple aver-
age combination of diving isolations along the time axis. Among
SOTAs with 3d architectures, TSM performs best (77.6% top-1 accu-
racy) showing the good capability of action modeling. Moreover,
further enhanced by SDA, TSN and TSM get remarkable absolute
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Table 3: Performance comparison with state-of-the-arts on Something-Something V1 and V2 datasets.

Method Backbone #Pretrain Frames×Crops×Clips #P FLOPs V1 V2
Top-1 Top-5 Top-1 Top-5

ECO [55] ResNet-18 Kinetics 8×1×1 47.5M 32G 39.6 — — —
ECO [55] 16×1×1 47.5M 64G 41.4 — — —
I3D [5]

3DResNet-50 ImageNet 32×1×2
28.0M 153.0G×1×2 41.6 72.2 — —

NLI3D [43] 35.3M 168.0G×1×2 44.4 76 — —
NLI3D+GCN [44] 62.2M 303.0G×1×2 46.1 76.8 — —
GST [31] ResNet-50 ImageNet 8×1×1 21.0M 29.5G×1×1 47.0 76.1 61.6 87.2
GST [31] 16×1×1 21.0M 59.0G×1×1 48.6 77.9 62.6 87.9
V4D [53] V4DResNet-50 None 8×10×3 — — 50.4 — — —
TSM+TPN [47] ResNet-50 ImageNet 8×1×1 24.3M 33.0G×1×1 49 — 62 —
TIN [36] ResNet-50 Kinetics 16×1×1 24.3M 67.0G×1×1 47 76.5 60.1 86.4
TEINet [28] ResNet-50 ImageNet 8×1×1 30.4M 33.0G×1×1 47.4 — 61.3 —
TEINet [28] 16×1×1 30.4M 66.0G×1×1 49.9 — 62.1 —
RubiksNet [10] ResNet-50 ImageNet 8×1×2 — — 46.4 74.5 61.7 87.3
TAM [30] ResNet-50 ImageNet 8×1×1 25.6M 33.0G×1×1 46.5 75.8 60.5 86.2
TAM [30] 16×1×1 25.6M 66.0G×1×1 47.6 77.7 62.5 87.6
TEA [24] ResNet-50 ImageNet 8×3×10 24.5M 35.0G×3×10 51.7 80.5 — —
TEA [24] 16×3×10 24.5M 70.0G×3×10 52.3 81.9 — —
STM [20] ResNet-50 ImageNet 8×3×10 24.0M 33.3G×3×10 49.2 79.3 62.3 88.8
STM [20] 16×3×10 24.0M 66.5G×3×10 50.7 80.4 64.2 89.8
SmallBig [23] ResNet-50 ImageNet 8×3×2 — 57.0G×3×2 48.3 78.1 61.6 87.7
SmallBig [23] 16×3×2 — 114.0G×3×2 50.0 79.8 63.8 88.9
TSN [42]

ResNet-50 ImageNet

8×1×1 23.9M 32.9G 19.7 46.6 30 60.5
SDA-TSN 8×1×1 25.8M 33.9G 47.5 75.4 60.6 86.4
SDA-TSN 8×3×2 25.8M 33.9G×3 × 2 49.5 77.5 63.0 88.0
SDA-TSN 16×1×1 25.8M 67.8G 49.3 78.0 62.4 87.7
SDA-TSN 16×3×2 25.8M 67.8G×3 × 2 50.6 79.3 64.7 89.0
SDA-TSN𝐸𝑛 (16+8)×3×2 — 101.7G×3 × 2 52.6 80.6 66.1 89.8
TSM [27]

ResNet-50 ImageNet

8×1×1 23.9M 32.9G 45.6 74.2 59.7 86.2
SDA-TSM 8×1×1 25.8M 33.9G 48.6 77.1 61.8 87.3
TSM [27] 8×1×2 23.9M 32.9G×1×2 47.2 75.9 61.2 87.1
SDA-TSM 8×1×2 25.8M 33.9G×1×2 50.2 79.1 63.6 88.5
SDA-TSM 8×3×2 25.8M 33.9G×3×2 51.1 79.5 64.6 89.1
TSM [27] 16×1×1 23.9M 65.8G 47.2 77.1 62.0 87.6
SDA-TSM 16×1×1 25.8M 67.8G 51.3 79.6 63.3 88.5
TSM [27] 16×1×2 23.9M 65.8G×1×2 48.4 78.1 63.1 88.2
SDA-TSM 16×1×2 25.8M 67.8G×1×2 52.2 80.9 64.7 89.5
SDA-TSM 16×3×2 25.8M 67.8G×3×2 52.8 81.3 65.4 90.0
SDA-TSM𝐸𝑛 (16+8)×3×2 — 101.7G×3×2 54.8 82.5 67.3 90.8

Table 4: Performance comparison on the updated Diving48
dataset using the official train/validation split V2.

Method Backbone #Frame Top-1 Top-5
C3D 3DResNet-50 8 73.4 96.0
GST ResNet-50 8 74.2 94.5
TSN ResNet-50 8 72.4 96.8
SDA-TSN ResNet-50 8 79.6 97.4
TSM ResNet-50 8 77.6 97.7
SDA-TSM ResNet-50 8 80.2 97.3

Table 5: Performance comparison on EPIC-KITCHENS-55
dataset. All results are based on our train/validation split.

Method Backbone #Frame Verb Noun
C3D 3DResNet-50 8 45.2 21.5
GST ResNet-50 8 46.4 21.1
TSN ResNet-50 8 37.4 23.1
SDA-TSN ResNet-50 8 50.7 24.6
TSM ResNet-50 8 48.2 22.9
SDA-TSM ResNet-50 8 50.0 24.4

improvements of 7.2% and 2.6% respectively and outperforms all
the SOTAs with ride margins.

EPIC-KITCHENS-55. To show the generality of SDA for vari-
ous video recognition tasks, we also compare SDA-Nets with SOTAs
on the ego-motion video dataset EPIC-KITCHENS-55 in Figure 5.

The dataset focuses on cooking activities with the tasks of mo-
tion (i.e., verb) classification and object (i.e., noun) classification.
We observe different changing trends of performance on the two
sub-tasks. Specifically, for the verb classification, all methods with
temporal modeling (i.e., C3D, GST, TSM) outperform the 2D TSN,
but as for noun classification, all 3D networks fail to do better the
2D TSN model. One possible reason is that objects need more spa-
tial modeling rather than temporal modeling. Being consistent with
the observations on other datasets, SDA-Nets perform better than
their backbones, which, again, demonstrates the robustness of SDA
under various requirements. But, interestingly, SDA-TSN achieves
a high performance of 50.7%/24.6% on the two sub-tasks, which
is even slightly better than the one (50.0%/24.4%) of SDA-TSM. It
could be because that there is often a severe camera shake in these
epic videos and as a result, the temporal information on a small
receptive field (e.g., 3) may be not precise.

4.5 Analysis and Interpretation
We investigate various dependency modeling units to understand
the impact of different dependencies on different kinds of video
actions using the Something-Something V1 dataset. Here, we adopt
TSN as the backbone network. Figure 4 compares the per-category
performances. It can be found that different types of dependencies
are good at categorizing different actions. For example, as LST mod-
els the long-range spatio-temporal dependency, it can thus benefit
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Figure 5: Average weights of dependency modeling units of
SDA from Res1-4 of TSN. All validation samples of 174 cate-
gories in SSV1 are used. All units play amore salient role in a
specific layer than others with a obvious margin of weights.

the model for recognizing such as “Poking a stack of something
so the stack collapses” that needs global dependency. LT and LS
give attention to long-range temporal and spatial dependencies
and assign the dependency impact spatially and temporally, respec-
tively, and as a result, they can greatly boost the performance for
such as “Pouring something into something until it overflows” and
“Moving something down”. For the actions that require strong local
spatio-temporal reasoning, e.g, “Moving something and something
so they pass each other”, the short-range dependency modeling unit
(S122) performs much better than others. Besides, the attention-
based selective dependency aggregation (SEC) method consistently
outperforms the single versions, demonstrating the effectiveness
of dynamic multi-dependency modeling. In addition, we also show
the averaged attention weights 2 of different dependencies com-
puted by QSA, as shown by the curves in the figure. Among these
actions, the importance of different dependencies are clearly dis-
tinguished, which basically proves the feasibility and utility of the
used selective dependency aggregation strategy.

To more clearly understand how the dependency aggregation
block (DAG) works on different residual blocks in the TSN back-
bone (i.e., ResNet-50), we report the averaged attention values of

2To clearly demonstrate the attention weights changing trends of four dependency
modeling units, we centralize them by subtracting the averages respectively.

each dependency (e.g., LST, LT, LS, S122) computed by QSA on
all the 174 action categories. Generally, a higher attention weight
indicates the more important it is. From Figure 5(a), we can find that
attention weights of different dependencies vary in residual blocks.
Specifically, the long-range spatio-temporal dependency (LST) has
a relatively larger attention value in the front layer, i.e., Residual
Block 1. This phenomenon can be interpreted as that feature points
in Residual Block 1 have a smaller spatio-temporal receptive field
while global dependency complements the short-board. When the
layer going deeper, the contribution of global dependency model-
ing decreases with the enlarging of the receptive field. Differently,
the other two long-range dependency variants (LT and LS) impact
more to the latter layers in Blocks 3 (LT) and 4 (LS) in 5(a)(b). We
speculate that this is because that the low-level features learned by
Blocks 1 and 2 are less precise for dependency information model-
ing. Moreover, the LT has a smaller attention value in Block 4. One
possible explanation is that there the temporal convolutions have
been stacked for at least 13 layers which results in the temporal
receptive field is much larger than the tested 8 frames, decrease
the importance of temporal global dependency. Similar fashion
to LS but different in the pooling receptive field, the short-range
modeling unit (S122) works complementarily to LS, i.e., its effect is
emphasized in Block2 and inhibited in Block 4, which agrees with
our expectation.
5 CONCLUSION
In this paper, we have presented a novel selective dependency ag-
gregation module leveraging diverse dependency preferences of
video contents for action classification. We firstly construct the
multi-dependency modeling block to model dependencies under
various perspectives by multi-direction multi-scale feature squeeze
and dependency excitation. Ablation study shows that all of the
dependencies can help the backbone TSN to get substantial perfor-
mance improvements. Selective aggregation on those long-range
and short-range dependencies further greatly boosts the perfor-
mances of all backbones on various benchmarks. The visualization
results of attention weights computed by the query structured at-
tention mechanism in DAG also explicitly show the dependency
preference of different video actions. Despite the substantial per-
formance gains, SDA incurs little computation burden and few
parameters to the basic networks TSN and TSM.
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