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Abstract—Efficient action recognition aims to classify a video
clip into a specific action category with a low computational
cost. It is challenging since the integrated spatial-temporal
calculation (e.g., 3D convolution) introduces intensive operations
and increases complexity. This paper explores the feasibility of
the integration of channel splitting and filter decoupling for
efficient architecture design and feature refinement by proposing
a novel spatio-temporal collaborative (STC) module. STC splits
the video feature channels into two groups and separately learns
spatio-temporal representations in parallel with decoupled convo-
lutional operators. Particularly, STC consists of two computation-
efficient blocks, i.e., ST and TS, where they extract either
spatial (S·) or temporal (T·) features and further refine their
features with either temporal (·T) or spatial (·S) contexts globally.
The spatial/temporal context refers to information dynamics
aggregated from temporal/spatial axis. To thoroughly examine
our method’s performance in video action recognition tasks,
we conduct extensive experiments using five video benchmark
datasets requiring temporal reasoning. Experimental results show
that the proposed STC networks achieve a competitive trade-off
between model efficiency and effectiveness.

Index Terms—Efficient action recognition, deep video neural
network, channel split, feature contextualization.

I. INTRODUCTION

The advances in data capturing, storage, and communication
devices have produced vast amounts of video data in security,
defense, consumer and enterprise communities. Efficient action
recognition techniques that automatically and accurately extract
and model actions/activities from videos are highly desired
by various applications, such as video surveillance, large-
scale retrieval, robotics, etc. Current deep neural network
technologies significantly boost the development of video action
recognition, e.g., video CNNs [1]–[4].

The key problems of building efficient video networks lie
in how to significantly reduce the model complexity while
maintain or even improve the recognition performance. Before
reviewing the efficient network architectures, we first give an in-
depth look at the video actions. Actions in videos are syntheses
of object entities and their interactions taking place in specific
surrounding environments. The interactions can be short-term
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Fig. 1: Sampled clips from EPIC-KITCHENS (top left),
Something-Something V1 (top right), and Diving48 (bottom)
datasets. The “cut bell pepper” is a short-term action, where
the blended interactions among hand, knife and bell pepper are
key clues. The other two are long-term actions, which require
long-term temporal reasoning.

or long-term. Here, we show some example clips in Fig. 1
sampled from the widely used fine-grained video classification
datasets. To recognise the action of “cut bell pepper”, both
the objects and their short-term interactions are needed to
be modeled. In contrast, for the other two long-term actions,
further modeling of long-range dependencies is critical. This
indicates that jointly modeling local spatio-temporal patterns
and long-range dependencies are essential for a video network,
especially when processing long-term actions.

Current efficient video network models mainly focus on
designing the lightweight spatio-temporal unit to take the place
of the heavy computational 3D convolution. The general low-
computation regime relies on kernel decomposition, i.e., 2D
spatial convolution plus 1D temporal convolution [5]–[7]. An-
other line of work uses the parameter-free operations to replace
the convolutional operations, e.g., temporal shift [8], spatio-
temporal shift [9], and the learnable correlation operator [10].
Moreover, feature channel splitting can also significantly reduce
the model parameters [11]. However, these one-size-fits-all
spatio-temporal units cannot discriminatively captures diverse
video actions. For more powerful video representation learning,
there are also some works that pay attention to feature refine-
ment with global contexts, such as non-local neural network
[12], temporal excitation and aggregation (TEA) [13], and
temporal adaptive module (TAM) [14]. Although these methods
improve the performance of their backbones significantly, they
inherently incur more extra computation burden.
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Fig. 2: Performance and complexity comparison on the action
classification dataset Something-Something V1 [15]. Our STC
and its lightweight version STC-Light show better trade-off
between accuracy and efficiency, when compared with previous
methods such as ECO [16], TIN [17], TEINet [18], TSM [4],
GST [11], TAM [14] and TEA [13]. Except ECO adopts
ResNet-18 as backbone, all the other methods use ResNet-
50 as backbone.

In this work, we propose a new efficient spatio-temporal
paradigm, i.e., spatio-temporal collaborative (STC) module,
which can jointly model the local spatio-temporal feature
pattern and the global long-range dependency with a much
lower computational load. STC combines the channel splitting
(or group convolution) and temporal shift to achieve effi-
cient modeling and meanwhile refines features with global
spatial/temporal contexts aggregated from the other axis.
Specifically, the proposed STC module consists of two spatio-
temporal operation blocks, named ST and TS, where ST

firstly extracts spatial feature from a channel group and then
refine it with temporal contexts, while in contrast, TS firstly
extracts temporal feature from the other channel group and
then refine it with spatial context. ST and TS process their
feature channel groups in parallel. The two resulted features
are finally concatenated along the channel dimension.

In particular, ST uses the “temporal shift + 2D convolu-
tion” to achieve spatio-temporal modeling. As temporal shift
operation is computation-free, this combination is much more
efficient than the 3D convolution used in GST [11]. Moreover,
we introduce a feature refinement block that imposes global
spatial context to influence each channel element along the
temporal dimension. While in TS, we use a 1D convolution to
model temporal information from the other channel group and
build a mirror refinement block to explore the impact of global
temporal context on spatial pixels. Since spatial and temporal
contents work together for video representation learning in
ST and TS, we thus name our proposed module as spatio-
temporal collaborative (STC) module. Compared to GST, our
STC emphasizes more temporal modeling and also exploits the
global contextual information for feature refinement, making it
more capable of capturing long-term actions as demonstrated

in the experiments. In the implementation, we provide two
variants of STC, i.e., the standard STC and lightweight STC.
We evaluate their efficiency and effectiveness in various fine-
grained action classification benchmarks. Fig. 2 shows that
both STC variants achieve better accuracy-cost trade-off than
the other ResNet-based video neural network models.

The contributions of our method are threefold:
• Two lightweight and powerful spatio-temporal units.

The proposed ST and TS blocks can achieve both neigh-
boring local spatio-temporal and long-range dependency
modeling with low computational costs.

• Efficient action recognition model. We construct two
variants of STC models for efficient action recognition
through separately processing two paralleled feature
groups with ST and TS. The STC/STC-Light model has
only 0.92/0.84× parameters and 0.82/0.81× FLOPs of
the standard 2D ResNet.

• Competitive trade-off between model efficiency and
effectiveness. We verify our STC models on five video
datasets that require temporal modeling. Experiments
demonstrate that STC variants can achieve a competitive
trade-off between efficiency (parameters/FLOPs) and
effectiveness (action recognition accuracy).

II. RELATED WORK

We briefly review the deep neural networks for video action
recognition and organize them according to their temporal
modeling strategies and model complexities. Then, we review
the related attention mechanisms proposed for video feature
refinement.

Classical Deep Video Architectures. Deep convolutional
neural networks (CNNs) have pride of place in computer
vision. The earliest video networks [19]–[23] make efforts
to temporally aggregate spatial features extracted by 2D CNNs
(e.g., VGG [24], ResNet [25]) among frames. The temporal
aggregation mainly includes frame feature fusion [19], [21],
[22] and frame score fusion [20]. For example, video CNN
[19] proposes to fuse the frame features at the early or/and
late layers, dynamic image networks [21] use rank pooling
machine to encode the temporal evolution across frames,
while temporal relation networks (TRN) [22] introduce extra
multilayer perceptrons to model temporal relations. In contrast,
temporal segment network (TSN) [20] averagely pools the
predicted frame-level scores to obtain the video score. Although
these video networks incur little overhead to model complexity,
having similar model complexities with the 2D CNN backbones,
they are usually failed to recognise complex dynamics.

Instead of simply adopting the pooling operation on the
frames, there are also some works that use more advanced
feature fusion techniques to organize the frame-level features.
For example, ActionS-ST-VLAD [26] uses the vector-based
encoding method-vector of locally aggregated descriptors
(VLAD) to learn video-level representation. The work [27]
extracts various CNN latent concept descriptors and applies
video pooling to them to obtain video representation. Attention
clusters [28] adopt the attention mechanism to integrate the
video local features. The works [29], [30] input the features
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extracted from 2D CNN into the LSTM to model the temporal
relations among those continuous video frames. In the work
[31], the authors present an energy optimization method for
dynamic texture extraction and recognition in videos. Apart
from the RGB features, TVNet [32] proposes to learn optical-
flow-like features from videos by unfolding the iterations of
the TV-L1 [33] method to customized neural layers.

Research preferences are then shifted to constructing spatio-
temporal units, which can jointly model neighboring local
spatio-temporal patterns. The most representative works are 3D
CNNs, such as C3D [1], I3D [2], ECO [16] and V4D [34]. C3D
directly replaces each 2D convolution of a 2D network with
a 3D convolution. I3D shares the same network architecture
with C3D but inflates an ImageNet [2] pretrained 2D model
to initialize network by weight copying. ECO [16] tops a
3D net on the 2D net to achieve temporal modeling. While,
V4D [34] proposes to use 4D convolution to model clip-level
relations. There are also other attempts to enable rich video
content extraction. For example, the work [35] applies the
deep manifold learning to a convolutional layer to learn more
discriminative features for action recognition. The pairwise two-
stream ConvNets (PTC) [36] adaptively combine the RGB and
flow feature to learn domain-invariant features for cross-domain
action recognition. Since the use of heavy computational
operators, these video network models have huge number of
parameters and are learning inefficient.

Efficient Deep Video Architectures. To tackle the problem
of high computational cost of 3D CNNs, academic efforts
have been made to design efficient deep architectures and
improve network flexibility. Example works include P3D [5],
R(2+1)D [37], S3D [38], SlowFast [39], X3D [40], CoST [41],
GST [11], bLVNet [42], TSM [8], GSM [43] and RubikShift [9].
P3D, R(2+1)D, S3D and SlowFast propose to decompose the
3D convolution to the combination of 2D spatial convolution
and 1D temporal convolution, while CoST performs 2D convo-
lution along three orthogonal views of video data to achieve the
similar function of 3D convolution. SlowFast further builds slow
and fast pathways to explore the resolution trade-off across axes.
X3D reduces the model parameters by progressively expanding
a 2D network across several axes. GST decomposes the feature
channels into spatial and temporal groups in parallel. bLVNet
operates on both low-resolution and high-resolution frames
with the use of depthwise temporal aggregation. Different to
those decomposition regimes, another direction is to propose
computation-free operators. For example, TSM replaces the
1D temporal convolution with the shift operation along time
axis, sharing the same number of parameters and FLOPs
with C2D. GSM extends TSM with learnable shift gates.
Moreover, RubikShift even replaces all convolutional filters
with lightweight spatial/temporal shift operations. The proposed
STC adopts the channel splitting strategy used by GST but
replace the spatial-only (2D convolution) and temporal-only
(1D convolution) operators with two integrated spatio-temporal
blocks.

Attentions for Video Feature Refinement. Attention mech-
anisms show promising performance on modeling long-range
dependencies. In video action recognition, the long-range depen-
dencies can be reflected in space and time axes. Existing works

make efforts towards the exploration and utilization of global
perspective contexts for feature refinement. For example, the
non-local network [12] recomputes each of local feature points
in the 3D feature map as a weighted sum of feature responses
of its all spatio-temporal neighbors. S3D-G [7] refine the learnt
feature of S3D by using the global spatio-temporal contexts
squeezed along the channel dimension in a gating manner.
Temporal excitation and aggregation (TEA) [13] extends the
squeeze-and-excitation network (SE-Net) [44] proposed for
image processing to enhance models with aggregated temporal
context. While, TAM [14] proposes to refine the layer-wise
feature with global temporal context adaptively. The work
[45] proposes two types of attention mechanism called statistic-
based attention (SA) and learning-based attention (LA) to attach
higher importance to the crucial elements in each video frame.
STA-CNN [46] incorporates a temporal attention mechanism
and a spatial attention mechanism into a unified convolutional
network to recognize actions in videos. Compared to prior
works, STC takes both spatial and temporal axial contexts
into account and achieves paralleled feature refinement with
channel group operation.

III. SPATIAL-TEMPORAL COLLABORATIVE MODULE

Spatio-temporal collaborative module replaces the inefficient
3D 3× 3× 3 convolution (Fig. 3(a)) in a residual layer with
two efficient spatio-temporal operational blocks, i.e., ST and
TS, for video representation learning. As shown in Fig. 3(d),
STC firstly splits the input channels into two groups and then
separately processes them by ST and TS in parallel. Different
to the operations used in P3D/GST that only processes one
specific aspect information (spatial-only or temporal-only) in
one channel group, both the two ST and TS blocks in STC can
achieve sptatio-temporal information encoding. Benefiting from
the use of channel splitting, temporal shift and global pooling
operations, the proposed STC models are much more efficient
and have even fewer parameters than a standard 2D network
counterpart (i.e., ResNet-50). In the following sections, we
elaborate the details of STC module, including the designing
and computational analysis of ST and TS and the final video
classification network architecture.

A. Collaborative Blocks ST and TS

Channel splitting, aka channel decomposition, is an efficient
way to reduce model complexity in both image and video neural
networks, and separately modeling appearance and motion cues
on the two split channel groups has been demonstrated to be
effective for video action recognition. However, we argue that
the spatial/temporal-only feature can be further refined by
exploring and utilizing the contextual information from the
other perspective. Our STC is inspired by GST and TSM but
replaces the 2D spatial-convolution with a newly designed ST

operational block and the 3D spatio-temporal convolution with
the other TS operational block. Formally, lets denote the input
feature map of our STC module as X ∈ RT×H×W×C , where
T,H,W , and C are the size of the temporal, height, width,
and channel, respectively. Different to the work of GST (Fig.
3(c)) that splits the feature channels equally to two groups, we
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Fig. 3: Architecture comparison between the existing networks and our STC module. (a) shows the 3D convolution network
(C3D). (b) shows the P3D block, which decouples the spatial and temporal filters. (c) shows a GST module, which decomposes
the feature channels into spatial and temporal groups in parallel. (d) shows the proposed STC module.
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Fig. 4: The details of the spatial-temporal collaborative blocks in our standard STC module (ST and TS).

introduce a hyper-parameter α to control the splitting ratio, as
shown in Fig. 3(d). Below, we illustrate ST and TS blocks, as
well as their light-weight versions, in detail.

Spatial-temporal Modeling with Temporal Refinement,
ST Block. As shown in the left part of Fig. 4, given the input
feature XST ∈ RT×H×W×αC , we use a 2D convolution with
1×3×3 kernel to capture the appearance information from these
spatial channels. As temporal information is much more useful
in temporal reasoning, we further introduce the temporal shift
with moving 1/8 channels as in TSM before the 2D convolution
to model the temporal interaction in channel dimension. Then,
we build a temporal refinement (TR) block to refine the learnt
feature by considering the global spatial contextual information.
Specifically, we first shrink the learnt feature along the spatial

dimension using 2D average pooling, maintaining temporal
T × 1 × 1 × αC statistics, then adopt the 1D convolution
with kernel 3 × 1 × 1, padding 1 and stride 1, to mix the
global spatial contextual information within a small temporal
receptive field, and finally we use the sigmoid function and
expand operation to calculate an element-wise weight tensor
with values in the range of (0.0, 1.0). Suppose that the learnt
feature by 2D convolution is YST ∈ RT×H×W×αC and the
element-wise weight tensor is EST ∈ RT×H×W×αC . The final
output feature ZST

∈ RT×H×W×αC can thus be computed by

ZST
= EST

� YST
, (1)

where � denotes the Hadamard product.
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Fig. 5: The details of the lightweight STC module (ST-Light and TS-Light).

Temporal Modeling with Spatial Refinement, TS Block.
As shown in the right part of Fig. 4, the calculations of TS

are similar mirroring operations to ST. In particular, given the
input feature XTS ∈ RT×H×W×(1−α)C , we use a 1D 3×1×1
convolution to capture the temporal information across frames,
resulting in a T × H ×W × (1 − α)C output feature YTS

.
Afterwards, similar to the operation in ST, we build a spatial
refinement (SR) block to utilize the global temporal information
to refine the learnt feature YTS

. Specifically, we averagely pool
YTS along the temporal dimension, representing the temporal
context as a 1 ×H ×W × C global temporal matrix. Then,
a 2D 1× 3× 3 convolution (padding 1 and stride 1) is used
to compute the impact of the aggregated temporal context to
each spatial location. Finally, the sigmoid function and expand
operation are used to obtain the element-wise weights. Formally,
the final output feature is computed as follows:

ZTS
= ETS

� YTS
. (2)

The features ZST
and ZTS

calculated by ST and TS respec-
tively are further concatenated together in channel dimension
as

Z = Concat(ZST ,ZTS), (3)

where Z ∈ RT×H×W×C is the ultimate learnt feature map of
STC.

Lightweight ST and TS. Here, we also present the
lightweight version of the proposed ST and TS blocks, which
introduces fewer parameters without significant performance
drop as demonstrated in the experiment. As shown in Fig. 5,
before feeding into the gating weight computation unit, the
lightweight ST and TS additionally use a linear projection
to reduce the number of feature channels with a reduction
ratio r in the refinement block. In implementation, we adopt
a 1 × 1 × 1 convolution to achieve the channel reduction
and the relu function to get the new feature map. The two
newly resulted feature refinement blocks are similar to the

squeeze-and-excitation module [44] in model structure, i.e.,
the bottleneck structure, but differ in contextual information
modeling. We denote the STC module with lightweight ST

and TS blocks as STC-Light.
Our proposed STC modules take full advantages of the

channel splitting and lightweight computational unit (i.e., 1D
and 2D convolution and temporal shift) in efficient video action
modeling. The element-wise refinement blocks further exploit
global contextual information (i.e., the temporal context in ST

and the spatial context in TS) to refine the learnt feature by
attending on a specific feature aspect. In this case, the ST and
TS, as well as their lightweight versions, are not only confined
to a single local convolutional region. Moreover, the use of
global average pooling in refinement blocks does not incur
significant memory consumption.

B. Computational Analysis

TABLE I: Comparison of the number of parameters for different
modules. For clarity, we use C = 64 (Stage-1 in ResNet-50)
as an example to compute the detailed number of parameters.
The hyperparameters are set to α = 3/4 and r = 4, which are
the final settings of our STC and STC-Light. For GST, α is
set to 3/4 following the setting in their paper.

Model Params Result (C = 64) Percentage
C2D 9× C2 36,864 100.00%
C3D 27× C2 110,592 300.00%
P3D 12× C2 49,152 133.33%
GST 9× (3/2− α)× C2 27,648 75.00%

STC 12× [α2+ 30,720 83.33%
(1− α)2]× C2

STC-Light [(9 + 4/r)α2+ 24,448 66.32%
(3 + 10/r)(1− α)2]× C2

The channel split ratio α and the channel reduction ratio
r are used to control and specify the complexity of ST and
TS blocks, where r is only for the lightweight versions. For
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the standard ST and TS, the total parameters are: 12α2C2

and 12(1− α)2C2. For the light-weight ST and TS, the total
parameters are: (9+4/r)α2C2 and (3+10/r)α2C2. Thus, we
can easily compute the number of parameters of STC modules.
As the existing modules and the proposed STC modules only
differ in the middle layer of the residual block, in Table I, we
only list their middle layer parameters for comparison. From
this table, we can find that the proposed STC and STC-Light
models have even less number of parameters than the 2D C2D
model when properly setting α and r. For example, when
setting α = 3/4, the number of parameters of STC (STC-
Light) layer is only 83.33% (66.32%) of C2D’s but enables
multi-scale temporal modeling and multiple kinds of contextual
information exploring.

C. Network Architecture

The basis network instantiation follows a ResNet structure.
We replace each of the feature filtering layer in the ResNet, for
example, the 3×3×3 convolutional layer in C3D model, with
the proposed efficient STC modules. To predict the probability
distribution of action classes of the entire input video, we
follow the strategy of TSN [20] that averagely pools the frame-
level action scores among all the video frames. In terms of
model architecture, our proposed STC model is similar to GST
model. In the experiment, we show that the STC models can
achieve better performance while require lower computational
burden than GST.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

The proposed STC models focus on modeling actions that
need temporal reasoning. Thus, we select five benchmarked
video datasets that contain a broad range of complex dynamic
actions such as human-object interactions, human poses and
first-person vision actions, to evaluate our method.

Something-Something. Something-Something datasets have
two versions, V1 [15] and v2 [47], and contain ∼110k (V1) and
∼220k (V2) video clips for 174 fine-grained action categories.
The video clips show humans performing pre-defined basic
actions with everyday objects, and thus require long-term
temporal modeling to describe the interactions among human,
object and surroundings. We report the performance on the
validation set.

Diving48. Diving48 [48] is a fine-grained video dataset of
competitive diving, consisting of ∼18k trimmed video clips of
48 unambiguous dive sequences. As dives differ in multiple
stages, the action recognition requires modeling of long-term
temporal dynamics. The holder recently updated the dataset
by manually cleaning dive annotations and removing poorly
segmented videos. We conduct experiments on the updated
version using the new official train/validation split V2.

Egocentric Video Datasets. EGTEA Gaze+ [49] and EPIC-
KITCHENS [50] offer first-person vision actions, covering
a wide range of non-scripted daily activities and involving
rich human-object interactions occurred in native environments.
Specifically, EGTEA Gaze+ contains ∼10k instances of fine-
grained actions for 106 activity classes. We use the three official

train/validation splits for performance examination. While for
EPIC-KITCHENS, we select the EPIC-KITCHENS-55 for use
and report the verb and noun classification results following
the train/validation splitting mechanism of [51]. The number of
action instances in the training and validating sets are 23,191
and 5,281 respectively.

We evaluate the video classification performance with top-
1/5 accuracy (%) and also report the number of parameters
and FLOPs (floating point operations) to clearly compare the
model complexity. Here, FLOPs measure the computational
operations to run a single instance of a given model. Fewer
FLOPs show that the model is more efficient. In the experiment,
we use the python package Thop1 to calculate the parameters
and FLOPs.

B. Implementation Details

All STC variants are implemented in Pytorch and run on
servers with 4×2080Ti or 3090 GPUs. We adopt ResNet-
50 [25] pretrained on ImageNet [52] as the backbone. The
parameters of newly added layers are randomly initialized.

Training and Inference. In the training, We use the
uniform sampling method described in TSN [20] to obtain
input frames. The uniform sampling method first separates
the video frames into T equally sized groups along the time
line and randomly select one frame from each group as a
representative. The selected frames are further resized with
the short-size as 240 for Something-Something datasets and as
256 for others and their original aspect ratios are kept. During
training, a 224 × 224 patch is cropped out of the center of
the frame, and then the center crop is randomly scaled within
the range of {1, 0.875, 0.75, 0.66} and randomly horizontal
flipped for data augmentation. We train the network with a
batch size 10 per GPU and optimize using SGD with an initial
learning rate 0.01 for 50 epochs and decay it by 0.1 at epoch
30 and 40. The dropout is set to 0.5. In the inference, we
report top-1 and top-5 accuracies and compute them on the
evaluation set. The video frame selection here is also a uniform
sampling but uses different selection strategies for different
clip settings. Specifically, for 1-clip sampling only the middle
frame in each of T frame groups is selected, and for 2-clip
sampling both the first and the middle frames in each of T
frame groups are selected. The two clip sampling strategies are
proposed by TSN [20]. While for 10-clip sampling proposed
by TEA [13], it randomly selects a frame from each group and
repeats this operation 10 times to obtain 10 clips. It is worth
noting that the time interval between any two neighboring
sampling frames for the 1-clip and 2-clip sampling strategies is
fixed, while it is a variable-sized one for the 10-clip sampling.
The resolution of center crop is fixed to 224×224 for all
experiments. Particularly, we sample one clip per video for
the ablation study and multiple clips (2 or 10) per video for
the final comparison with SOTAs following [8], [13], [20] on
Something-Something datasets. While for the other datasets,
we report the experimental results with 8 frames input and 1
clip per video. The number of sampled frames and clips will
be specified in the tables.

1Pytorch-OpCounter: https://github.com/Lyken17/pytorch-OpCounter
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C. Ablation Study

In this subsection, we present ablation studies on Something-
Something V1 dataset to study the impacts of hyperparameters,
including the channel splitting ratio α and the channel reduction
ratio r, temporal shift and feature refinement.

TABLE II: Performance comparison with different α and r
on the validation set of Something-Something V1. For all
methods, we use ResNet-50 as the backbone and uniformly
sample 8 frames per video. The results of C3D, P3D and GST
are referenced from [11]. We fix the α = 3/4 for STC-Light.

Method α Params FLOPs/video Top-1/Top-5 (%)
TSN None 23.9M 32.9G 17.7/46.6
C3D None 42.5M 62.5G 46.2/75.6
P3D None 29.4M 37.8G 45.7/75.0
TSM None 23.9M 32.9G 45.6/74.2
GST 3/4 21.0M 29.5G 47.0/76.1
GST-Large 3/4 29.6M 40.4G 47.7/76.4
STC (only TS) 0 27.6M 32.9G 24.9/50.8
STC 1/4 22.0M 22.8G 41.9/71.3
STC 2/4 20.1M 23.5G 46.4/75.7
STC 3/4 22.0M 26.9G 48.3/77.4
STC (only ST) 1 27.6M 32.9G 47.3/76.0
STC-Equal 3/4 20.1M 24.6G 47.0/76.3
α = 3/4 r

STC-Light 2 21.0M 26.80G 48.2/77.3
STC-Light 4 20.1M 26.76G 48.2/77.4
STC-Light 8 19.6M 26.75G 47.8/77.2
STC-Light 16 19.4M 26.75G 47.7/77.1
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Fig. 6: STC variants w/ and w/o temporal shift and feature
refinement.
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Fig. 7: Performance comparison of STC variants w/o temporal
shift and feature refinement on Something-Something V1.

Settings of α and r. The channel splitting ratio α controls
the proportion of input channels of ST and TS blocks. Larger
value of α results in more channels being input to ST branch for
modeling spatio-temporal patterns. r is introduced for channel
reduction in the refinement blocks specialized in STC-Light

variants. Particularly, we use max(8, αC/r) (ST-Light) and
max(8, (1− α)C/r) (TS-Light) to limit the channel size by a
minimum of 8, which is similar to the operation in SK-Net
[57]. Here, we examine α with values of {0, 1/4, 2/4, 3/4, 1}
and r with values of {2, 4, 8, 16}. For comparison clarity, we
integrate the two performance results into one table, as shown
in Table II. It can be found that when setting α = 3/4, our
STC model obtains best performance among these competing
methods, which shows that the channel splitting mechanism
significantly improves performance compared to the non-split
C3D, P3D and TSM. Also, leaving more channels into spatio-
temporal modeling, i.e., a larger α, generally benefits the
actions containing rich temporal object interactions. Compared
to the GST-Large which uses the same channel splitting
strategy with STC, STC not only achieves better performances
(48.3%/77.4% vs. 47.7%/76.4% of GST-Large) but also requires
much less computation costs (22.0M parameters and 26.9G
FLOPs vs. 29.6M parameters and 40.4G FLOPs of GST-
Large). STC-Equal follows the channel splitting strategy used
by GST that splits the input channels into two equal groups
and controls the output channels using α. We observe that
STC-Equal is more efficient (20.1M parameters and 24.6G
FLOPs) than GST (21.0M parameters and 29.5G FLOPs) while
having the similar top-1/5 results. For the STC-Light variants,
increasing the channel reduction ratio r does not result in
significant performance degradation while can further reduce
the number of parameters. By considering the trade-off between
performance and parameters, we set r = 4 for STC-Light.

In terms of model complexity, the proposed efficient com-
putational units ST and TS in STC greatly reduce model
complexity (22.0M vs 42.5M of C3D, 26.9G vs 62.5G of
C3D), and the STC-Light containing 20.1M parameters and
26.8G FLOPs is even superior to the much efficient GST model
(21.0M parameters and 29.5G FLOPs) in both classification
performance and model complexity.

Temporal shift and feature refinement. We next examine
the functions of temporal shift and feature refinement blocks
(i.e., TR and SR) of STC by peeling them away one by one. Fig.
6 shows the resulted three STC variants, including the simplified
STC (Sim-STC (a)), non-temporal-shift STC (NonShift-STC
(b)) and standard STC (c). We report their top-1 accuracy com-
parison in Fig. 7 with the settings of α = 0, 1/4, 2/4, 3/4, 1.
We observe that the NonShift-STC consistently outperforms
the Sim-STC, indicating the effectiveness of feature refinement.

TABLE III: Performance comparison w/wo temporal refine-
ment (TR) and spatial refinement (SR) blocks on Something-
Something V1 dataset. Note that temporal shift is used by
ST.

α TR (ST) SR (TS) Top-1 (%)

0 8 8 12.3
8 4 24.9

3/4

8 8 46.9
4 8 48.1
8 4 47.8
4 4 48.3

1 8 8 45.6
4 8 47.3
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TABLE IV: Performance comparison of state-of-the-arts on Something V1 and V2 datasets.

Method Backbone #Pretrain Frames×Crops×Clips Params FLOPs V1 V2
Top-1 Top-5 Top-1 Top-5

TSN [20] ResNet-50 ImageNet 8×1×1 23.9M 32.9G 19.7 46.6 30 60.5
ECO [16] ResNet-18 Kinetics 8×1×1 47.5M 32G 39.6 — — —
ECO [16] 16×1×1 47.5M 64G 41.4 — — —
I3D [2]

3DResNet-50 ImageNet 32×1×2
28.0M 153.0G×1×2 41.6 72.2 — —

NLI3D [12] 35.3M 168.0G×1×2 44.4 76 — —
NLI3D+GCN [53] 62.2M 303.0G×1×2 46.1 76.8 — —
TSM+TPN [54] ResNet-50 ImageNet 8×1×1 24.3M 33.0G×1×1 49 — 62 —
TIN [17] ResNet-50 Kinetics 8×1×1 24.3M 34.0G×1×1 45.8 75.1 — —
TIN [17] ResNet-50 Kinetics 16×1×1 24.3M 67.0G×1×1 47.0 76.5 60.1 86.4
TEINet [18] ResNet-50 ImageNet 8×1×1 30.4M 33.0G×1×1 47.4 — 61.3 —
TEINet [18] 16×1×1 30.4M 66.0G×1×1 49.9 — 62.1 —
RubiksNet [9] ResNet-50 ImageNet 8×1×2 — — 46.4 74.5 61.7 87.3
TAM [14] ResNet-50 ImageNet 8×1×1 25.6M 33.0G×1×1 46.5 75.8 60.5 86.2
TAM [14] 16×1×1 25.6M 66.0G×1×1 47.6 77.7 62.5 87.6
bLVNet-TAM [42] bLResNet-50 ImageNet 8×1×2 25.0M 23.8G×1×2 46.4 76.6 59.1 86.0
GST [11] ResNet-50 ImageNet 8×1×1 21.0M 29.5G×1×1 47.0 76.1 61.6 87.2
GST [11] 16×1×1 21.0M 59.0G×1×1 48.6 77.9 62.6 87.9
TSM [4] ResNet-50 ImageNet 8×1×2 23.9M 32.9G×1×2 47.3 76.2 61.7 87.4
TSM [4] 16×1×2 23.9M 65.8G×1×2 48.4 78.1 63.1 88.2
SmallBig [55] ResNet-50 ImageNet 8×3×2 — 57.0G×3×2 48.3 78.1 61.6 87.7
SmallBig [55] 16×3×2 — 114.0G×3×2 50.0 79.8 63.8 88.9
V4D [34] V4DResNet-50 None 8×10×3 — — 50.4 — — —
STM [56] ResNet-50 ImageNet 8×3×10 24.0M 33.3G×3×10 49.2 79.3 62.3 88.8
STM [56] 16×3×10 24.0M 66.5G×3×10 50.7 80.4 64.2 89.8
TEA [13]

ResNet-50 ImageNet
8×1×1 24.5M 35.0G×1×1 48.9 78.1 — —

TEA [13] 8×3×10 24.5M 35.0G×3×10 51.7 80.5 — —
TEA [13] 16×3×10 24.5M 70.0G×3×10 52.3 81.9 — —

STC ResNet-50 ImageNet

8×1×1 22.0M 26.9G×1×1 48.3 77.4 61.2 87.1
8×3×2 22.0M 26.9G×3×2 50.1 79.1 63.3 88.7

8×3×10 22.0M 26.9G×3×10 51.1 79.7 63.4 88.6
16×1×1 22.0M 53.6G×1×1 50.5 79.3 63.7 88.7
16×3×2 22.0M 53.6G×3×2 51.7 80.2 65.1 90.0
16×3×10 22.0M 53.6G×3×10 52.2 80.7 65.3 89.1

STC-Light ResNet-50 ImageNet

8×1×1 20.1M 26.8G×1×1 48.2 77.4 61.4 87.2
8×3×2 20.1M 26.8G×3×2 49.8 79.0 63.5 88.8

8×3×10 20.1M 26.8G×3×10 50.2 79.1 63.9 88.9
16×1×1 20.1M 53.5G×1×1 50.4 79.4 63.6 88.6
16×3×2 20.1M 53.5G×3×2 51.4 80.3 65.1 89.8
16×3×10 20.1M 53.5G×3×10 51.9 80.6 65.1 91.0

STCEnsemble ResNet-50 ImageNet (8+16)×3×2 — 80.5G×3×2 53.3 81.8 66.4 90.5
(8+16)×3×10 — 80.5G×3×10 53.7 82.0 66.9 91.0

STC-LightEnsemble ResNet-50 ImageNet (8+16)×3×2 — 80.3G×3×2 53.2 81.8 66.4 90.4
(8+16)×3×10 — 80.3G×3×10 53.4 81.9 66.8 90.3

When equipping the module with the temporal shift operation,
the resulted standard STC shows some performance increase,
especially for the non-shift STC with α = 1. This can be
explained by the fact that the temporal shift operation enables
the non-shift STC to model local temporal interactions. When
setting α = 3/4, the effect of temporal shift in ST block is not
as significant when with α = 1. This may be because that the
temporal convolution of the other TS block is already capable
of capturing local temporal interactions.

We also examine STC with a single refinement block (TR
or SR). Table III lists the performance comparison. Firstly,
we test STC with a single path, e.g., ST (α = 1) and TS

(α = 0). It can be found that both TR and SR can significantly
improve their network’s performance, e.g., 12.3%→24.9%
for TS w. SR and 45.6%→47.3% for ST w. TR. Then,
we test the standard STC (i.e., with α=3/4) and observe
consistent performance improvements with TR, SR and both,
e.g., 46.9%→48.1% (+1.2%) for TR, 46.9%→47.8% (+0.9%)
for SR, and 46.9%→48.3% (+1.4%) for both. Particularly,
the top-1 accuracy gain with TR (+1.2%) is higher than that

with SR (+0.9%). This may be because that the Something-
Something dataset requires strong temporal modeling, temporal
context obtained by TR can provide richer information than SR
for video activity recognition. While, the combination of TR
and SR, i.e., the standard STC, obtains the highest performance
of 48.3%, which gives evidence that both temporal and spatial
contexts can contribute to action recognition.

D. Comparison with State-of-the-Arts

Something-Something V1&V2. We report the performance
comparisons, including the number of parameters, FLOPs
and top-1/top-5 classification accuracies, between our STC
variants and SOTAs on Something-Something V1&V2 datasets
in Table IV. Overall, our proposed STC variants achieve better
or comparable performance while requiring the lowest model
complexities among the competing methods. Given 8 frames
as input, the STC model has only 22.0M parameters and 26.9G
FLOPs, which is more efficient than the standard 2D ResNet-
50 (TSN) (23.9M parameters and 32.9G FLOPs) by a large
margin. The STC-Light model even outperforms the current
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efficient GST model on both the classification accuracy (48.2%
vs 47.0%) and the complexity (20.1M vs 21.0M in parameters
and 26.8G vs 29.5G in FLOPs) when using the same settings.

More specifically, on Something-Something V1, STC
achieves 52.2% top-1 accuracy with 16-frames×3-crops×10-
clips, which is better than most of the SOTAs, except TEA that
obtain the highest performance of 52.3%. However, considering
the model size (parameters) and computation cost (FLOPs),
STC (22.0M and 53.6G×3×10 FLOPs) is comparable to TEA
(24.5M and 70.0G×3×10 FLOPs). On Something-Something
V2, STC achieves the highest top-1 performance of 65.3%, and
the lightweight version STC-Light (65.1% top-1 accuracy) also
outperforms all the competing SOTAs. Since action categories
of the Something-Something datasets lie more on long-range
temporal dependency, models that have the inherent ability of
long-range modeling, such as the proposed STC variants, TAM
and TEA, consistently perform well. In addition, we give the
ensemble result of {8,16} frames STC models following the
fusion strategy in [4]. As shown in the last few rows of Table IV,
STCEnsemble achieves a high performance of 53.7%/82.0% top-
1/top5 accuracy on Something-Something V1 and 66.9%/91.0%
top-1/top5 accuracy on Something-Something V2.

TABLE V: Performance comparison on the updated Diving48
dataset using the train/validation split V2.

Method Backbone #Frame Top-1 Top-5
TSN (our impl.) ResNet-50 8 72.4 96.8
C3D (our impl.) 3DResNet-50 8 73.4 96.0
GST (our impl.) ResNet-50 8 74.2 94.5
TSM (our impl.) ResNet-50 8 77.6 97.7
TIN (our impl.) ResNet-50 8 73.1 96.3
TEA (our impl.) ResNet-50 8 76.5 96.9
STC ResNet-50 8 77.9 97.4
STC-Light ResNet-50 8 77.8 97.7

Diving48. Table V shows the performance comparison on
Diving48 [48] dataset. Since this new version of the dataset has
been thoroughly cleaned, we re-run all the competing methods
by ourselves, including TSN, C3D, GST, TSM, TIN and TEA,
for a fair comparison. All the results are obtained with 8 sample
frames as input. Interestingly, the simple 2D TSN model also
achieves a relatively good result. We believe that this is because
the continuous movement changes can be recognized by the
simple average combination of subtle body poses at different
dive stages. Further capturing the temporal cues in the subtle
body pose can benefit the diving action recognition, which
is demonstrated by the performance improvement (72.4% →
77.6%) obtained by TSM. Moreover, by further considering
the long-range relations across subtle poses, our STC and
STC-Light outperform all the other counterparts with 77.9%
and 77.8% precision. It is worth noting that there is a huge
difference between the reported results here and the ones in
[48] (only 10%-30% for TSN and C3D). This is because that
the used dataset version is an currently updated one, where the
dive annotations have been manually cleaned and the poorly
segmented videos were removed.

EGTEA Gaze+ and EPIC-KITCHENS. The egocentric
actions in the two datasets contain various interactions be-
tween human and objects occurring in the daily environment.
Those interactions generally continue for a short term. This

TABLE VI: Performance comparison on EGTEA Gaze+ dataset
using train/validation split 1/2/3. Except R34-2stream using
ResNet-34 as backbone, all the other models adopt ResNet-50
as backbones.

Method #Frame Split1 Split2 Split3
I3D-2stream [49] 24 55.8 53.1 53.6
R34-2stream [58] 25 62.2 61.5 58.6
TSN (our impl.) 8 61.6 58.5 55.2
C3D (our impl.) 8 62.1 59.2 57.0
GST (our impl.) 8 63.3 61.2 59.2
TSM (our impl.) 8 63.5 62.8 59.5
TIN (our impl.) 8 61.6 61.6 57.1
TEA (our impl.) 8 65.5 64.8 62.4
STC 8 64.6 63.9 60.5
STC-Light 8 64.1 63.7 60.9

TABLE VII: Performance comparison on EPIC-KITCHENS-55
dataset. The results of all the methods are obtained using our
train/validating split.

Method Backbone #Frame Verb Noun
TSN (our impl.) ResNet-50 8 37.4 23.1
C3D (our impl.) 3DResNet-50 8 45.2 21.5
GST (our impl.) ResNet-50 8 46.4 21.1
TSM (our impl.) ResNet-50 8 48.2 22.9
TIN (our impl.) ResNet-50 8 47.6 22.8
TEA (our impl.) ResNet-50 8 50.5 21.7
STC ResNet-50 8 48.7 22.8
STC-Light ResNet-50 8 48.5 22.6

observation prefers the action recognition methods that can
model the spatial (e.g., objects) and the temporal (e.g., quick
motion) cues at the same time.

Table VI shows the performance comparison on the EGTEA
Gaze+ using three official training/validation splits. It provides
evidence for the above claim, that is, the sptaio-temporal
modeling networks, i.e., C3D, GST, TSM, TIN, TEA and
STCs, obtain better performance than the space-only TSN.
Also, the attention based methods TEA and STCs can further
improve the performance, which show evidence that feature
contextualization is important for action recognition.

Different to the task on EGTEA Gaze+ dataset, models
are required to separately recognize the motion ingredient
(i.e., verb) and object ingredient (i.e., noun) of the action on
the EPIC-KITCHENS dataset. As shown in Table VII, for
verb recognition, all the temporal models outperform the 2D
TSN, and our STC and STC-Light again obtain second better
results. For noun recognition, the 2D TSN perform best among
these methods, this may be because the objects need more
spatial modeling rather than temporal modeling. Also, our STC
variants obtain comparable results.

E. Visualization

To analyze the effectiveness of the feature refinement blocks,
we report the temporal refinement scores (ST) and visualize
the spatial refinement heatmap (TS) with four examples of
Something-Something V1 validation set in Fig. 8. For example
in Fig. 8(a), given the clip with the label “Wiping something
off of something”, we first show the flattened frames in the
top row. Then, we extract feature refinement scores of the last
layer of STC model. Specifically, (1) the temporal refinement
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Fig. 8: The visualization of the feature refinement results with 8 frames input on Something-Something V1 validation set.
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(bottom left) provides the gating weights of all frames and
marks the important moments (the frames in the red box). (2)
the spatial refinement (bottom right) shows the heatmap and
the responses of the frames. As expected, in the four examples
the temporal attention and spatial attention success in highlight
key timestamps and core regions, respectively.

V. CONCLUSION

In this paper, we have presented a new spatio-temporal
collaborative (STC) module to tackle the problem of effi-
cient action recognition, which consists of two lightweight
collaborative computational units, i.e., ST and TS, as well as
their lightweight versions, particularly, exhibit effectiveness on
both local spatio-temporal pattern and long-range dependency
modeling. Through channel splitting and building upon the
basis 2D ResNet structure, the resulted STC variants effectively
decrease the computation cost. The extensive experiments have
shown that our model achieves state-of-the-art results on five
popular benchmarks and also demonstrate its robustness against
both short- and long-term actions.
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